929 resultados para variance effective population size
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Genética e Melhoramento Animal - FCAV
Resumo:
The Gir cattle breed (Bos indicus) is an important genetic resource for milk production throughout the tropics. The small number of Gir animals introduced in Brazil, rapid dissemination of this breed recently, and the intensification of selection practices could contribute to increase of inbreeding level and reduce genetic diversity in this population. The population was analyzed in terms of pedigree completeness level, inbreeding coefficient, coancestry, generation interval, effective population size, effective number of founders and ancestors, among others. Despite the low mean inbreeding (around 2%), minor problems were identified in the population structure of the Brazilian Gir cattle, e.g., trend of narrower bottlenecks in the pedigree in recent years. The effective population sizes based on inbreeding (94) or coancestry (165.9) as well as the effective number of ancestors (76) and founders (143) were relativity high. The major subdivision of the Gir breed was observed between 1993 and 2002 (dairy and dual-purpose herds, wide use of within-herd matings). In this period the level of inbreeding remained at a higher level, there was a small increase in coancestry and the number of equivalent subpopulations was approximately 6. After 2002, there was genetic exchange between subpopulations, reduction in the average inbreeding, pronounced increase in the average coancestry, and the number of equivalent subpopulations was about 2. Furthermore, it was found that the mean generation interval of the population tended to increase in recent years (around 9 years). About 23% of genetic diversity has been lost since the first generation of founders. Based on the effective population size, number of equivalent subpopulations, inbreeding, coancestry, and loss of genetic diversity, the Gir population is still highly structured, but there is ample room for artificial selection. The results regarding the effective number of founders and ancestors in the present population demonstrate the existence of bottlenecks in the pedigree and indicate the need for population structure monitoring. Nevertheless, the Brazilian Gir breed can perfectly face a breeding program with high selection intensity. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Population genetics theory predicts loss in genetic variability because of drift and inbreeding in isolated plant populations; however, it has been argued that long-distance pollination and seed dispersal may be able to maintain gene flow, even in highly fragmented landscapes. We tested how historical effective population size, historical migration and contemporary landscape structure, such as forest cover, patch isolation and matrix resistance, affect genetic variability and differentiation of seedlings in a tropical palm (Euterpe edulis) in a human-modified rainforest. We sampled 16 sites within five landscapes in the Brazilian Atlantic forest and assessed genetic variability and differentiation using eight microsatellite loci. Using a model selection approach, none of the covariates explained the variation observed in inbreeding coefficients among populations. The variation in genetic diversity among sites was best explained by historical effective population size. Allelic richness was best explained by historical effective population size and matrix resistance, whereas genetic differentiation was explained by matrix resistance. Coalescence analysis revealed high historical migration between sites within landscapes and constant historical population sizes, showing that the genetic differentiation is most likely due to recent changes caused by habitat loss and fragmentation. Overall, recent landscape changes have a greater influence on among-population genetic variation than historical gene flow process. As immediate restoration actions in landscapes with low forest amount, the development of more permeable matrices to allow the movement of pollinators and seed dispersers may be an effective strategy to maintain microevolutionary processes.
Resumo:
Analysis of genomic data is increasingly becoming part of the livestock industry. Therefore, the routine collection of genomic information would be an invaluable resource for effective management of breeding programs in small, endangered populations. The objective of the paper was to demonstrate how genomic data could be used to analyse (1) linkage disequlibrium (LD), LD decay and the effective population size (NeLD); (2) Inbreeding level and effective population size (NeROH) based on runs of homozygosity (ROH); (3) Prediction of genomic breeding values (GEBV) using small within-breed and genomic information from other breeds. The Tyrol Grey population was used as an example, with the goal to highlight the potential of genomic analyses for small breeds. In addition to our own results we discuss additional use of genomics to assess relatedness, admixture proportions, and inheritance of harmful variants. The example data set consisted of 218 Tyrol Grey bull genotypes, which were all available AI bulls in the population. After standard quality control restrictions 34,581 SNPs remained for the analysis. A separate quality control was applied to determine ROH levels based on Illumina GenCall and Illumina GenTrain scores, resulting into 211 bulls and 33,604 SNPs. LD was computed as the squared correlation coefficient between SNPs within a 10 mega base pair (Mb) region. ROHs were derived based on regions covering at least 4, 8, and 16 Mb, suggesting that animals had common ancestors approximately 12, 6, and 3 generations ago, respectively. The corresponding mean inbreeding coefficients (F ROH) were 4.0% for 4 Mb, 2.9% for 8 Mb and 1.6% for 16 Mb runs. With an average generation interval of 5.66 years, estimated NeROH was 125 (NeROH>16 Mb), 186 (NeROH>8 Mb) and 370 (NeROH>4 Mb) indicating strict avoidance of close inbreeding in the population. The LD was used as an alternative method to infer the population history and the Ne. The results show a continuous decrease in NeLD, to 780, 120, and 80 for 100, 10, and 5 generations ago, respectively. Genomic selection was developed for and is working well in large breeds. The same methodology was applied in Tyrol Grey cattle, using different reference populations. Contrary to the expectations, the accuracy of GEBVs with very small within breed reference populations were very high, between 0.13-0.91 and 0.12-0.63, when estimated breeding values and deregressed breeding values were used as pseudo-phenotypes, respectively. Subsequent analyses confirmed the high accuracies being a consequence of low reliabilities of pseudo-phenotypes in the validation set, thus being heavily influenced by parent averages. Multi-breed and across breed reference sets gave inconsistent and lower accuracies. Genomic information may have a crucial role in management of small breeds, even if its primary usage differs from that of large breeds. It allows to assess relatedness between individuals, trends in inbreeding and to take decisions accordingly. These decisions would be based on the real genome architecture, rather than conventional pedigree information, which can be missing or incomplete. We strongly suggest the routine genotyping of all individuals that belong to a small breed in order to facilitate the effective management of endangered livestock populations.
Resumo:
For many tree species, mating system analyses have indicated potential variations in the selfing rate and paternity correlation among fruits within individuals, among individuals within populations, among populations, and from one flowering event to another. In this study, we used eight microsatellite markers to investigate mating systems at two hierarchical levels (fruits within individuals and individuals within populations) for the insect pollinated Neotropical tree Tabebuia roseo-alba. We found that T. roseo-alba has a mixed mating system with predominantly outcrossed mating. The outcrossing rates at the population level were similar across two T. roseo-alba populations; however, the rates varied considerably among individuals within populations. The correlated paternity results at different hierarchical levels showed that there is a high probability of shared paternal parentage when comparing seeds within fruits and among fruits within plants and full-sibs occur in much higher proportion within fruits than among fruits. Significant levels of fixation index were found in both populations and biparental inbreeding is believed to be the main cause of the observed inbreeding. The number of pollen donors contributing to mating was low. Furthermore, open-pollinated seeds varied according to relatedness, including half-sibs, full-sibs, self-sibs and self- half-sibs. In both populations, the effective population size within a family (seed-tree and its offspring) was lower than expected for panmictic populations. Thus, seeds for ex situ conservation genetics, progeny tests and reforestation must be collected from a large number of seed-trees to guarantee an adequate effective population in the sample.
Resumo:
The study of population structure by pedigree analysis is useful to identify important circumstances that affect the genetic history of populations. The intensive use of a small number of superior individuals may reduce the genetic diversity of populations. This situation is very common for the beef cattle breeds. Therefore, the objectives of the present study were to analyze the pedigree and possible inbreeding depression on traits of economic interest in the Marchigiana and Bonsmara breeds and to test the inclusion of the individual inbreeding coefficient (F-i) or individual increases in inbreeding coefficient (Delta F-i) in the genetic evaluation model for the quantification of inbreeding depression. The complete pedigree file of the Marchigiana breed included 29,411 animals born between 1950 and 2003. For the Bonsmara breed, the pedigree file included 18,695 animals born between 1988 and 2006. Only animals with at least 2 equivalent generations of known pedigree were kept in the analyses of inbreeding effect on birth weight, weaning weight measured at about 205 d, and BW at 14 mo in the Marchigiana breed, and on birth weight, weaning weight, and scro-tal circumference measured at 12 mo in the Bonsmara breed. The degree of pedigree knowledge was greater for Marchigiana than for Bonsmara animals. The average generation interval was 7.02 and 3.19 for the Marchigiana and Bonsmara breed, respectively. The average inbreeding coefficient was 1.33% for Marchigiana and 0.26% for Bonsmara. The number of ancestors explaining 50% of the gene pool and effective population size computed via individual increase in coancestry were 13 and 97.79 for Marchigiana and 41 and 54.57 for Bonsmara, respectively. These estimates indicate reduction in genetic variability in both breeds. Inbreeding depression was observed for most of the growth traits. The model including Delta F-i can be considered more adequate to quantify inbreeding depression. The inclusion of F-i or Delta F-i in the genetic evaluation model may not result in better fit to the data. A genetic evaluation with simultaneous estimation of inbreeding depression can be performed in Marchigiana and Bonsmara breeds, providing additional information to producers and breeders.
Resumo:
In this study we analyzed the phylogeographic pattern and historical demography of an endemic Atlantic forest (AF) bird, Basileuterus leucoblepharus, and test the influence of the last glacial maximum (LGM) on its population effective size using coalescent simulations. We address two main questions: (i) Does B. leucoblepharus present population genetic structure congruent with the patterns observed for other AF organisms? (ii) How did the LGM affect the effective population size of B. leucoblepharus? We sequenced 914 bp of the mitochondrial gene cytochrome b and 512 bp of the nuclear intron 5 of beta-fibrinogen of 62 individuals from 15 localities along the AF. Both molecular markers revealed no genetic structure in B. leucoblepharus. Neutrality tests based on both loci showed significant demographic expansion. The extended Bayesian skyline plot showed that the species seems to have experienced demographic expansion starting around 300,000 years ago, during the late Pleistocene. This date does not coincide with the LGM and the dynamics of population size showed stability during the LGM. To further test the effect of the LGM on this species, we simulated seven demographic scenarios to explore whether populations suffered specific bottlenecks. The scenarios most congruent with our data were population stability during the LGM with bottlenecks older than this period. This is the first example of an AF organism that does not show phylogeographic breaks caused by vicariant events associated to climate change and geotectonic activities in the Quaternary. Differential ecological, environmental tolerances and habitat requirements are possibly influencing the different evolutionary histories of these organisms. Our results show that the history of organism diversification in this megadiverse Neotropical forest is complex. Crown Copyright (c) 2012 Published by Elsevier Inc. All rights reserved.
Resumo:
BACKGROUND: DENV-1 is one of the four viral serotypes that causes Dengue, the most common mosquito-borne viral disease of humans. The prevalence of these viruses has grown in recent decades and is now present in more than 100 countries. Limited studies document the spread of DENV-1 over the world despite its importance for human health. METHODOLOGY/PRINCIPAL FINDINGS: We used representative DENV-1 envelope gene sequences to unravel the dynamics of viral diffusion under a Bayesian phylogeographic approach. Data included strains from 45 distinct geographic locations isolated from 1944 to 2009. The estimated mean rate of nucleotide substitution was 6.56 × 10⁻⁴ substitutions/site/year. The larger genotypes (I, IV and V) had a distinctive phylogenetic structure and since 1990 they experienced effective population size oscillations. Thailand and Indonesia represented the main sources of strains for neighboring countries. Besides, Asia broadcast lineages into the Americas and the Pacific region that diverged in isolation. Also, a transmission network analysis revealed the pivotal role of Indochina in the global diffusion of DENV-1 and of the Caribbean in the diffusion over the Americas. CONCLUSIONS/SIGNIFICANCE: The study summarizes the spatiotemporal DENV-1 worldwide spread that may help disease control.
Resumo:
Máster Oficial en Gestión Costera
Resumo:
Franches-Montagnes is the only native horse breed in Switzerland, therefore special efforts should be made for ensuring its survival. The objectives of this study were to characterize the structure of this population as well as genetic variability with pedigree data, conformation traits and molecular markers. Studies were focused to clarify if this population is composed of a heavy- and a light-type subpopulation. Extended pedigree records of 3-year-old stallions (n = 68) and mares (n = 108) were available. Evaluations of body conformation traits as well as pedigree data and molecular markers did not support the two-subpopulation hypothesis. The generation interval ranged from 7.8 to 9.3 years. The complete generation equivalent was high (>12). The number of effective ancestors varied between 18.9 and 20.1, whereof 50% of the genetic variability was attributed to seven of them. Genetic contribution of Warmblood horses ranged from 36% to 42% and that of Coldblood horses from 4% to 6%. The average inbreeding coefficient reached 6%. Inbreeding effective population size was 114.5 when the average increase of the inbreeding coefficient per year since 1910 was taken. Our results suggest that bottleneck situations occurred because of selection of a small number of sire lines. Promotion of planned matings between parents that are less related is recommended in order to avoid a reduction of the genetic diversity.
Resumo:
Understanding the evolutionary history of threatened populations can improve their conservation management. Re-establishment of past but recent gene flow could re-invigorate threatened populations and replenish genetic diversity, necessary for population persistence. One of the four nominal subspecies of the common yellow-tufted honeyeater, Lichenostomus melanops cassidix, is critically endangered despite substantial conservation efforts over 55 years. Using a combination of morphometric, genetic and modelling approaches we tested for its evolutionary distinctiveness and conservation merit. We confirmed that cassidix has at least one morphometric distinction. It also differs genetically from the other subspecies in allele frequencies but not phylogenetically, implying that its evolution was recent. Modelling historical distribution supported the lack of vicariance and suggested a possibility of gene flow among subspecies at least since the late Pleistocene. Multi-locus coalescent analyses indicated that cassidix diverged from its common ancestor with neighbouring subspecies gippslandicus sometime from the mid-Pleistocene to the Holocene, and that it has the smallest historical effective population size of all subspecies. It appears that cassidix diverged from its ancestor with gippslandicus through a combination of drift and local selection. From patterns of genetic subdivision on two spatial scales and morphological variation we concluded that cassidix, gippslandicus and (melanops + meltoni) are diagnosable as subspecies. Low genetic diversity and effective population size of cassidix may translate to low genetic fitness and evolutionary potential, thus managed gene flow from gippslandicus is recommended for its recovery.
Resumo:
In populations that are small and asexual, mutations with slight negative effects on fitness will drift to fixation more often than in large or sexual populations in which they will be eliminated by selection. If such mutations occur in substantial numbers, the combined effects of long-term asexuality and small population size may result in substantial accumulation of mildly deleterious substitutions. Prokaryotic endosymbionts of animals that are transmitted maternally for very long periods are effectively asexual and experience smaller effective population size than their free-living relatives. The contrast between such endosymbionts and related free-living bacteria allows us to test whether a population structure imposing frequent bottlenecks and asexuality does lead to an accumulation of slightly deleterious substitutions. Here we show that several independently derived insect endosymbionts, each with a long history of maternal transmission, have accumulated destabilizing base substitutions in the highly conserved 16S rRNA. Stabilities of Domain I of this subunit are 15–25% lower in endosymbionts than in closely related free-living bacteria. By mapping destabilizing substitutions onto a reconstructed phylogeny, we show that decreased ribosomal stability has evolved separately in each endosymbiont lineage. Our phylogenetic approach allows us to demonstrate statistical significance for this pattern: becoming endosymbiotic predictably results in decreased stability of rRNA secondary structure.