827 resultados para user-controlled cloud computing


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the results of a study that collected, compared and analyzed the terms and conditions of a number of cloud services vis-a-vis privacy and data protection. First, we assembled a list of factors that comprehensively capture cloud companies' treatment of user data with regard to privacy and data protection; then, we assessed how various cloud services of different types protect their users in the collection, retention, and use of their data, as well as in the disclosure to law enforcement authorities. This commentary provides comparative and aggregate analysis of the results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mobile Cloud Computing promises to overcome the physical limitations of mobile devices by executing demanding mobile applications on cloud infrastructure. In practice, implementing this paradigm is difficult; network disconnection often occurs, bandwidth may be limited, and a large power draw is required from the battery, resulting in a poor user experience. This thesis presents a mobile cloud middleware solution, Context Aware Mobile Cloud Services (CAMCS), which provides cloudbased services to mobile devices, in a disconnected fashion. An integrated user experience is delivered by designing for anticipated network disconnection, and low data transfer requirements. CAMCS achieves this by means of the Cloud Personal Assistant (CPA); each user of CAMCS is assigned their own CPA, which can complete user-assigned tasks, received as descriptions from the mobile device, by using existing cloud services. Service execution is personalised to the user's situation with contextual data, and task execution results are stored with the CPA until the user can connect with his/her mobile device to obtain the results. Requirements for an integrated user experience are outlined, along with the design and implementation of CAMCS. The operation of CAMCS and CPAs with cloud-based services is presented, specifically in terms of service description, discovery, and task execution. The use of contextual awareness to personalise service discovery and service consumption to the user's situation is also presented. Resource management by CAMCS is also studied, and compared with existing solutions. Additional application models that can be provided by CAMCS are also presented. Evaluation is performed with CAMCS deployed on the Amazon EC2 cloud. The resource usage of the CAMCS Client, running on Android-based mobile devices, is also evaluated. A user study with volunteers using CAMCS on their own mobile devices is also presented. Results show that CAMCS meets the requirements outlined for an integrated user experience.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surgical interventions are usually performed in an operation room; however, access to the information by the medical team members during the intervention is limited. While in conversations with the medical staff, we observed that they attach significant importance to the improvement of the information and communication direct access by queries during the process in real time. It is due to the fact that the procedure is rather slow and there is lack of interaction with the systems in the operation room. These systems can be integrated on the Cloud adding new functionalities to the existing systems the medical expedients are processed. Therefore, such a communication system needs to be built upon the information and interaction access specifically designed and developed to aid the medical specialists. Copyright 2014 ACM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cloud computing is increasingly being adopted in different scenarios, like social networking, business applications, scientific experiments, etc. Relying in virtualization technology, the construction of these computing environments targets improvements in the infrastructure, such as power-efficiency and fulfillment of users’ SLA specifications. The methodology usually applied is packing all the virtual machines on the proper physical servers. However, failure occurrences in these networked computing systems can induce substantial negative impact on system performance, deviating the system from ours initial objectives. In this work, we propose adapted algorithms to dynamically map virtual machines to physical hosts, in order to improve cloud infrastructure power-efficiency, with low impact on users’ required performance. Our decision making algorithms leverage proactive fault-tolerance techniques to deal with systems failures, allied with virtual machine technology to share nodes resources in an accurately and controlled manner. The results indicate that our algorithms perform better targeting power-efficiency and SLA fulfillment, in face of cloud infrastructure failures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Projeto para obtenção do grau de Mestre em Engenharia Informática e de Computadores

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data analytic applications are characterized by large data sets that are subject to a series of processing phases. Some of these phases are executed sequentially but others can be executed concurrently or in parallel on clusters, grids or clouds. The MapReduce programming model has been applied to process large data sets in cluster and cloud environments. For developing an application using MapReduce there is a need to install/configure/access specific frameworks such as Apache Hadoop or Elastic MapReduce in Amazon Cloud. It would be desirable to provide more flexibility in adjusting such configurations according to the application characteristics. Furthermore the composition of the multiple phases of a data analytic application requires the specification of all the phases and their orchestration. The original MapReduce model and environment lacks flexible support for such configuration and composition. Recognizing that scientific workflows have been successfully applied to modeling complex applications, this paper describes our experiments on implementing MapReduce as subworkflows in the AWARD framework (Autonomic Workflow Activities Reconfigurable and Dynamic). A text mining data analytic application is modeled as a complex workflow with multiple phases, where individual workflow nodes support MapReduce computations. As in typical MapReduce environments, the end user only needs to define the application algorithms for input data processing and for the map and reduce functions. In the paper we present experimental results when using the AWARD framework to execute MapReduce workflows deployed over multiple Amazon EC2 (Elastic Compute Cloud) instances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Informática

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cloud computing has recently become very popular, and several bioinformatics applications exist already in that domain. The aim of this article is to analyse a current cloud system with respect to usability, benchmark its performance and compare its user friendliness with a conventional cluster job submission system. Given the current hype on the theme, user expectations are rather high, but current results show that neither the price/performance ratio nor the usage model is very satisfactory for large-scale embarrassingly parallel applications. However, for small to medium scale applications that require CPU time at certain peak times the cloud is a suitable alternative.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grid is a hardware and software infrastructure that provides dependable, consistent, pervasive, and inexpensive access to high-end computational resources. Grid enables access to the resources but it does not guarantee any quality of service. Moreover, Grid does not provide performance isolation; job of one user can influence the performance of other user’s job. The other problem with Grid is that the users of Grid belong to scientific community and the jobs require specific and customized software environment. Providing the perfect environment to the user is very difficult in Grid for its dispersed and heterogeneous nature. Though, Cloud computing provide full customization and control, but there is no simple procedure available to submit user jobs as in Grid. The Grid computing can provide customized resources and performance to the user using virtualization. A virtual machine can join the Grid as an execution node. The virtual machine can also be submitted as a job with user jobs inside. Where the first method gives quality of service and performance isolation, the second method also provides customization and administration in addition. In this thesis, a solution is proposed to enable virtual machine reuse which will provide performance isolation with customization and administration. The same virtual machine can be used for several jobs. In the proposed solution customized virtual machines join the Grid pool on user request. Proposed solution describes two scenarios to achieve this goal. In first scenario, user submits their customized virtual machine as a job. The virtual machine joins the Grid pool when it is powered on. In the second scenario, user customized virtual machines are preconfigured in the execution system. These virtual machines join the Grid pool on user request. Condor and VMware server is used to deploy and test the scenarios. Condor supports virtual machine jobs. The scenario 1 is deployed using Condor VM universe. The second scenario uses VMware-VIX API for scripting powering on and powering off of the remote virtual machines. The experimental results shows that as scenario 2 does not need to transfer the virtual machine image, the virtual machine image becomes live on pool more faster. In scenario 1, the virtual machine runs as a condor job, so it easy to administrate the virtual machine. The only pitfall in scenario 1 is the network traffic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the advance of the Cloud Computing paradigm, a single service offered by a cloud platform may not be enough to meet all the application requirements. To fulfill such requirements, it may be necessary, instead of a single service, a composition of services that aggregates services provided by different cloud platforms. In order to generate aggregated value for the user, this composition of services provided by several Cloud Computing platforms requires a solution in terms of platforms integration, which encompasses the manipulation of a wide number of noninteroperable APIs and protocols from different platform vendors. In this scenario, this work presents Cloud Integrator, a middleware platform for composing services provided by different Cloud Computing platforms. Besides providing an environment that facilitates the development and execution of applications that use such services, Cloud Integrator works as a mediator by providing mechanisms for building applications through composition and selection of semantic Web services that take into account metadata about the services, such as QoS (Quality of Service), prices, etc. Moreover, the proposed middleware platform provides an adaptation mechanism that can be triggered in case of failure or quality degradation of one or more services used by the running application in order to ensure its quality and availability. In this work, through a case study that consists of an application that use services provided by different cloud platforms, Cloud Integrator is evaluated in terms of the efficiency of the performed service composition, selection and adaptation processes, as well as the potential of using this middleware in heterogeneous computational clouds scenarios

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, data handling and data analysis in High Energy Physics requires a vast amount of computational power and storage. In particular, the world-wide LHC Com- puting Grid (LCG), an infrastructure and pool of services developed and deployed by a ample community of physicists and computer scientists, has demonstrated to be a game changer in the efficiency of data analyses during Run-I at the LHC, playing a crucial role in the Higgs boson discovery. Recently, the Cloud computing paradigm is emerging and reaching a considerable adoption level by many different scientific organizations and not only. Cloud allows to access and utilize not-owned large computing resources shared among many scientific communities. Considering the challenging requirements of LHC physics in Run-II and beyond, the LHC computing community is interested in exploring Clouds and see whether they can provide a complementary approach - or even a valid alternative - to the existing technological solutions based on Grid. In the LHC community, several experiments have been adopting Cloud approaches, and in particular the experience of the CMS experiment is of relevance to this thesis. The LHC Run-II has just started, and Cloud-based solutions are already in production for CMS. However, other approaches of Cloud usage are being thought of and are at the prototype level, as the work done in this thesis. This effort is of paramount importance to be able to equip CMS with the capability to elastically and flexibly access and utilize the computing resources needed to face the challenges of Run-III and Run-IV. The main purpose of this thesis is to present forefront Cloud approaches that allow the CMS experiment to extend to on-demand resources dynamically allocated as needed. Moreover, a direct access to Cloud resources is presented as suitable use case to face up with the CMS experiment needs. Chapter 1 presents an overview of High Energy Physics at the LHC and of the CMS experience in Run-I, as well as preparation for Run-II. Chapter 2 describes the current CMS Computing Model, and Chapter 3 provides Cloud approaches pursued and used within the CMS Collaboration. Chapter 4 and Chapter 5 discuss the original and forefront work done in this thesis to develop and test working prototypes of elastic extensions of CMS computing resources on Clouds, and HEP Computing “as a Service”. The impact of such work on a benchmark CMS physics use-cases is also demonstrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modern cloud-based applications and infrastructures may include resources and services (components) from multiple cloud providers, are heterogeneous by nature and require adjustment, composition and integration. The specific application requirements can be met with difficulty by the current static predefined cloud integration architectures and models. In this paper, we propose the Intercloud Operations and Management Framework (ICOMF) as part of the more general Intercloud Architecture Framework (ICAF) that provides a basis for building and operating a dynamically manageable multi-provider cloud ecosystem. The proposed ICOMF enables dynamic resource composition and decomposition, with a main focus on translating business models and objectives to cloud services ensembles. Our model is user-centric and focuses on the specific application execution requirements, by leveraging incubating virtualization techniques. From a cloud provider perspective, the ecosystem provides more insight into how to best customize the offerings of virtualized resources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El mundo tecnológico está cambiando hacia la optimización en la gestión de recursos gracias a la poderosa influencia de tecnologías como la virtualización y la computación en la nube (Cloud Computing). En esta memoria se realiza un acercamiento a las mismas, desde las causas que las motivaron hasta sus últimas tendencias, pasando por la identificación de sus principales características, ventajas e inconvenientes. Por otro lado, el Hogar Digital es ya una realidad para la mayoría de los seres humanos. En él se dispone de acceso a múltiples tipos de redes de telecomunicaciones (3G, 4G, WI-FI, ADSL…) con más o menos capacidad pero que permiten conexiones a internet desde cualquier parte, en todo momento, y con prácticamente cualquier dispositivo (ordenadores personales, smartphones, tabletas, televisores…). Esto es aprovechado por las empresas para ofrecer todo tipo de servicios. Algunos de estos servicios están basados en el cloud computing sobre todo ofreciendo almacenamiento en la nube a aquellos dispositivos con capacidad reducida, como son los smarthphones y las tabletas. Ese espacio de almacenamiento normalmente está en los servidores bajo el control de grandes compañías. Guardar documentos, videos, fotos privadas sin tener la certeza de que estos no son consultados por alguien sin consentimiento, puede despertar en el usuario cierto recelo. Para estos usuarios que desean control sobre su intimidad, se ofrece la posibilidad de que sea el propio usuario el que monte sus propios servidores y su propio servicio cloud para compartir su información privada sólo con sus familiares y amigos o con cualquiera al que le dé permiso. Durante el proyecto se han comparado diversas soluciones, la mayoría de código abierto y de libre distribución, que permiten desplegar como mínimo un servicio de almacenamiento accesible a través de Internet. Algunas de ellas lo complementan con servicios de streaming tanto de música como de videos, compartición y sincronización de documentos entre múltiples dispositivos, calendarios, copias de respaldo (backups), virtualización de escritorios, versionado de ficheros, chats, etc. El proyecto finaliza con una demostración de cómo utilizar dispositivos de un hogar digital interactuando con un servidor Cloud, en el que previamente se ha instalado y configurado una de las soluciones comparadas. Este servidor quedará empaquetado en una máquina virtual para que sea fácilmente transportable e utilizable. ABSTRACT. The technological world is changing towards optimizing resource management thanks to the powerful influence of technologies such as Virtualization and Cloud Computing. This document presents a closer approach to them, from the causes that have motivated to their last trends, as well as showing their main features, advantages and disadvantages. In addition, the Digital Home is a reality for most humans. It provides access to multiple types of telecommunication networks (3G, 4G, WI-FI, ADSL...) with more or less capacity, allowing Internet connections from anywhere, at any time, and with virtually any device (computer personal smartphones, tablets, televisions...).This is used by companies to provide all kinds of services. Some of these services offer storage on the cloud to devices with limited capacity, such as smartphones and tablets. That is normally storage space on servers under the control of important companies. Saving private documents, videos, photos, without being sure that they are not viewed by anyone without consent, can wake up suspicions in some users. For those users who want control over their privacy, it offers the possibility that it is the user himself to mount his own server and its own cloud service to share private information only with family and friends or with anyone with consent. During the project I have compared different solutions, most open source and with GNU licenses, for deploying one storage facility accessible via the Internet. Some supplement include streaming services of music , videos or photos, sharing and syncing documents across multiple devices, calendars, backups, desktop virtualization, file versioning, chats... The project ends with a demonstration of how to use our digital home devices interacting with a cloud server where one of the solutions compared is installed and configured. This server will be packaged in a virtual machine to be easily transportable and usable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The enormous potential of cloud computing for improved and cost-effective service has generated unprecedented interest in its adoption. However, a potential cloud user faces numerous risks regarding service requirements, cost implications of failure and uncertainty about cloud providers' ability to meet service level agreements. These risks hinder the adoption of cloud. We extend the work on goal-oriented requirements engineering (GORE) and obstacles for informing the adoption process. We argue that obstacles prioritisation and their resolution is core to mitigating risks in the adoption process. We propose a novel systematic method for prioritising obstacles and their resolution tactics using Analytical Hierarchy Process (AHP). We provide an example to demonstrate the applicability and effectiveness of the approach. To assess the AHP choice of the resolution tactics we support the method by stability and sensitivity analysis. Copyright 2014 ACM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation presents and evaluates a methodology for scheduling medical application workloads in virtualized computing environments. Such environments are being widely adopted by providers of "cloud computing" services. In the context of provisioning resources for medical applications, such environments allow users to deploy applications on distributed computing resources while keeping their data secure. Furthermore, higher level services that further abstract the infrastructure-related issues can be built on top of such infrastructures. For example, a medical imaging service can allow medical professionals to process their data in the cloud, easing them from the burden of having to deploy and manage these resources themselves. In this work, we focus on issues related to scheduling scientific workloads on virtualized environments. We build upon the knowledge base of traditional parallel job scheduling to address the specific case of medical applications while harnessing the benefits afforded by virtualization technology. To this end, we provide the following contributions: (1) An in-depth analysis of the execution characteristics of the target applications when run in virtualized environments. (2) A performance prediction methodology applicable to the target environment. (3) A scheduling algorithm that harnesses application knowledge and virtualization-related benefits to provide strong scheduling performance and quality of service guarantees. In the process of addressing these pertinent issues for our target user base (i.e. medical professionals and researchers), we provide insight that benefits a large community of scientific application users in industry and academia. Our execution time prediction and scheduling methodologies are implemented and evaluated on a real system running popular scientific applications. We find that we are able to predict the execution time of a number of these applications with an average error of 15%. Our scheduling methodology, which is tested with medical image processing workloads, is compared to that of two baseline scheduling solutions and we find that it outperforms them in terms of both the number of jobs processed and resource utilization by 20–30%, without violating any deadlines. We conclude that our solution is a viable approach to supporting the computational needs of medical users, even if the cloud computing paradigm is not widely adopted in its current form.