928 resultados para uniform storng consistency
Resumo:
A generalised theory for the natural vibration of non-uniform thin-walled beams of arbitrary cross-sectional geometry is proposed. The governing equations are obtained as four partial, linear integro-differential equations. The corresponding boundary conditions are also obtained in an integro-differential form. The formulation takes into account the effect of longitudinal inertia and shear flexibility. A method of solution is presented. Some numerical illustrations and an exact solution are included.
Resumo:
Abstract is not available.
Resumo:
A theoretical study on the propagation of plane waves in the presence of a hot mean flow in a uniform pipe is presented. The temperature variation in the pipe is taken to be a linear temperature gradient along the axis. The theoretical studies include the formulation of a wave equation based on continuity, momentum, and state equation, and derivation of a general four-pole matrix, which is shown to yield the well-known transfer matrices for several other simpler cases.
Resumo:
This paper presents a formulation of an approximate spectral element for uniform and tapered rotating Euler-Bernoulli beams. The formulation takes into account the varying centrifugal force, mass and bending stiffness. The dynamic stiffness matrix is constructed using the weak form of the governing differential equation in the frequency domain, where two different interpolating functions for the transverse displacement are used for the element formulation. Both free vibration and wave propagation analysis is performed using the formulated elements. The studies show that the formulated element predicts results, that compare well with the solution available in the literature, at a fraction of the computational effort. In addition, for wave propagation analysis, the element shows superior convergence. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In the present note we have studied the harmonic and anharmonic oscillations of cylindrical plasma using Lagrangian formalism. In order to study the harmonic oscillations, the equations are linearized and the resulting equation for the displacement has been numerically solved. For situations present in thermonuclear reactors, the presence of axial magnetic field is found necessary to make the periods of oscillation to become comparable with the time required for the thermonuclear reactions to set in. A detailed analysis of the anharmonic oscillations reveals that the significant interaction is between the first and the second mode. The fundamental period of anharmonic oscillation is more than the corresponding period of harmonic oscillations by 9·2%. Graphs have been drawn for the amplitudes of relative variations in density and magnetic field and of the time-varying part of anharmonic oscillation.
Resumo:
A quartic profile in terms of the normal distance from the wall has been taken and coefficients are evaluated by satisfying one more boundary condition on the wall than the usual one. By doing so, the limitations about the Reynolds number of the quartic profile adopted by Lew (1949) has been removed. The Kármán (1921) Momentum Integral Equation has been used to evaluate the various characteristics of the flow. A comparative study of Lew's quartic profile and exponential profile together with the quartic profile of the present paper has been undertaken and the graphs for the various characteristics of the flow for a number of Mach numbers and suction coefficients have been drawn. At the end, certain conclusions of general nature about the velocity profiles have been recorded.
Resumo:
In order to study the elastic behaviour of matter when subjected to very large pressures, such as occur for example in the interior of the earth, and to provide an explanation for phenomena like earthquakes, it is essential to be able to calculate the values of the elastic constants of a substance under a state of large initial stress in terms of the elastic constants of a natural or stress-free state. An attempt has been made in this paper to derive expressions for these quantities for a substance of cubic symmetry on the basis of non-linear theory of elasticity and including up to cubic powers of the strain components in the strain energy function. A simple method of deriving them directly from the energy function itself has been indicated for any general case and the same has been applied to the case of hydrostatic compression. The notion of an effective elastic energy-the energy require to effect an infinitesimal deformation over a state of finite strain-has been introduced, the coefficients in this expression being the effective elastic constants. A separation of this effective energy function into normal co-ordinates has been given for the particular case of cubic symmetry and it has been pointed out, that when any of such coefficients in this normal form becomes negative, elastic instability will set in, with associated release of energy.
Resumo:
A ternary thermodynamic function has been developed based on statistico-thermodynamic considerations, with a particular emphasis on the higher-order terms indicating the effects of truncation at the various stages of the treatment. Although the truncation of a series involved in the equation introduces inconsistency, the latter may be removed by imposing various thermodynamic boundary conditions. These conditions are discussed in the paper. The present equation with higher-order terms shows that the α function of a component reduces to a quadratic function of composition at constant compositional paths involving the other two components in the system. The form of the function has been found to be representative of various experimental observations.
Resumo:
Non-uniform sampling of a signal is formulated as an optimization problem which minimizes the reconstruction signal error. Dynamic programming (DP) has been used to solve this problem efficiently for a finite duration signal. Further, the optimum samples are quantized to realize a speech coder. The quantizer and the DP based optimum search for non-uniform samples (DP-NUS) can be combined in a closed-loop manner, which provides distinct advantage over the open-loop formulation. The DP-NUS formulation provides a useful control over the trade-off between bitrate and performance (reconstruction error). It is shown that 5-10 dB SNR improvement is possible using DP-NUS compared to extrema sampling approach. In addition, the close-loop DP-NUS gives a 4-5 dB improvement in reconstruction error.
Resumo:
Utilization bounds for Earliest Deadline First(EDF) and Rate Monotonic(RM) scheduling are known and well understood for uniprocessor systems. In this paper, we derive limits on similar bounds for the multiprocessor case, when the individual processors need not be identical. Tasks are partitioned among the processors and RM scheduling is assumed to be the policy used in individual processors. A minimum limit on the bounds for a 'greedy' class of algorithms is given and proved, since the actual value of the bound depends on the algorithm that allocates the tasks. We also derive the utilization bound of an algorithm which allocates tasks in decreasing order of utilization factors. Knowledge of such bounds allows us to carry out very fast schedulability tests although we are constrained by the fact that the tests are sufficient but not necessary to ensure schedulability.
Resumo:
A fully self-consistent formulation is described here for the analysis and generation of base-pairs in non-uniform DNA structures, in terms of various local parameters. It is shown that the internal "wedge parameters" are mathematically related to the parameters describing the base-pair orientation with respect to an external helix axis. Hence any one set of three translation and three rotation parameters are necessary and sufficient to completely describe the relative orientation of the base-pairs comprising a step (or doublet). A general procedure is outlined for obtaining an average or global helix axis from the local helix axes for each step. A graphical representation of the local helix axes in the form of a polar plot is also shown and its application for estimating the curvature of oligonucleotide structures is illustrated, with examples of both A and B type structures.