924 resultados para tyrosine kinase receptor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In chronic myelogenous leukemia (CML), oncogenic BCR-ABL1 activates the Wnt pathway, which is fundamental for leukemia stem cell (LSC) maintenance. Tyrosine kinase inhibitor (TKI) treatment reduces Wnt signaling in LSCs and often results in molecular remission of CML; however, LSCs persist long term despite BCR-ABL1 inhibition, ultimately causing disease relapse. We demonstrate that TKIs induce the expression of the tumor necrosis factor (TNF) family ligand CD70 in LSCs by down-regulating microRNA-29, resulting in reduced CD70 promoter DNA methylation and up-regulation of the transcription factor specificity protein 1. The resulting increase in CD70 triggered CD27 signaling and compensatory Wnt pathway activation. Combining TKIs with CD70 blockade effectively eliminated human CD34(+) CML stem/progenitor cells in xenografts and LSCs in a murine CML model. Therefore, targeting TKI-induced expression of CD70 and compensatory Wnt signaling resulting from the CD70/CD27 interaction is a promising approach to overcoming treatment resistance in CML LSCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: The primary objective of our study was to study the effect of metformin in patients of metastatic renal cell cancer (mRCC) and diabetes who are on treatment with frontline therapy of tyrosine kinase inhibitors. The effect of therapy was described in terms of overall survival and progression free survival. Comparisons were made between group of patients receiving metformin versus group of patients receiving insulin in diabetic patients of metastatic renal cancer on frontline therapy. Exploratory analyses were also done comparing non-diabetic patients of metastatic renal cell cancer receiving frontline therapy compared to diabetic patients of metastatic renal cell cancer receiving metformin therapy. ^ Methods: The study design is a retrospective case series to elaborate the response rate of frontline therapy in combination with metformin for mRCC patients with type 2 diabetes mellitus. The cohort was selected from a database, which was generated for assessing the effect of tyrosine kinase inhibitor therapy associated hypertension in metastatic renal cell cancer at MD Anderson Cancer Center. Patients who had been started on frontline therapy for metastatic renal cell carcinoma from all ethnic and racial backgrounds were selected for the study. The exclusion criteria would be of patients who took frontline therapy for less than 3 months or were lost to follow-up. Our exposure variable was treatment with metformin, which comprised of patients who took metformin for the treatment of type 2 diabetes at any time of diagnosis of metastatic renal cell carcinoma. The outcomes assessed were last available follow-up or date of death for the overall survival and date of progression of disease from their radiological reports for time to progression. The response rates were compared by covariates that are known to be strongly associated with renal cell cancer. ^ Results: For our primary analyses between the insulin and metformin group, there were 82 patients, out of which 50 took insulin therapy and 32 took metformin therapy for type 2 diabetes. For our exploratory analysis, we compared 32 diabetic patients on metformin to 146 non-diabetic patients, not on metformin. Baseline characteristics were compared among the population. The time from the start of treatment until the date of progression of renal cell cancer and date of death or last follow-up were estimated for survival analysis. ^ In our primary analyses, there was a significant difference in the time to progression of patients receiving metformin therapy vs insulin therapy, which was also seen in our exploratory analyses. The median time to progression in primary analyses was 1259 days (95% CI: 659-1832 days) in patients on metformin therapy compared to 540 days (95% CI: 350-894) in patients who were receiving insulin therapy (p=0.024). The median time to progression in exploratory analyses was 1259 days (95% CI: 659-1832 days) in patients on metformin therapy compared to 279 days (95% CI: 202-372 days) in non-diabetic group (p-value <0.0001). ^ The median overall survival was 1004 days in metformin group (95% CI: 761-1212 days) compared to 816 days (95%CI: 558-1405 days) in insulin group (p-value<0.91). For the exploratory analyses, the median overall survival was 1004 days in metformin group (95% CI: 761-1212 days) compared to 766 days (95%CI: 649-965 days) in the non-diabetic group (p-value<0.78). Metformin was observed to increase the progression free survival in both the primary and exploratory analyses (HR=0.52 in metformin Vs insulin group and HR=0.36 in metformin Vs non-diabetic group, respectively). ^ Conclusion: In laboratory studies and a few clinical studies metformin has been proven to have dual benefits in patients suffering from cancer and type 2-diabetes via its action on the mammalian target of Rapamycin pathway and effect in decreasing blood sugar by increasing the sensitivity of the insulin receptors to insulin. Several studies in breast cancer patients have documented a beneficial effect (quantified by pathological remission of cancer) of metformin use in patients taking treatment for breast cancer therapy. Combination of metformin therapy in patients taking frontline therapy for renal cell cancer may provide a significant benefit in prolonging the overall survival in patients with metastatic renal cell cancer and diabetes. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Signal transduction pathways operative in lymphokine activated killer (LAK) cells during execution of cytolytic function have never been characterized. Based on ubiquitous involvement of protein phosphorylation in activation of cytolytic mechanisms used by CTL and NK cells, it was hypothesized that changes in protein phosphorylation should occur when LAK encounter tumor targets. It was further hypothesized that protein kinases would regulate LAK-mediated cytotoxicity. Exposure to either SK-Mel-1 (melanoma) or Raji (lymphoma) targets consistently led to increased phosphorylation of two 65-kD LAK proteins pp65a and -b, with isoelectric points (pI) of 5.1 and 5.2 respectively. Increased p65 phosphorylation was initiated between 1 and 5 min after tumor coincubation, occurred on Ser residues, required physical contact between LAK and tumors, correlated with target recognition, and also occurred after crosslinking Fc$\gamma$RIIIA in the absence of tumors. Both pp65a and -b were tentatively identified as phosphorylated forms of the actin-bundling protein L-plastin, based on pI, molecular weight, and cross-reactivity with specific antiserum. The known biochemical properties of L-plastin suggest it may be involved in regulating adhesion of LAK to tumor targets. The protein tyrosine kinase-specific inhibitor Herb A did not block p65 phosphorylation, but blocked LAK killing of multiple tumor targets at a post-binding stage. Greater than 50% inhibition of cytotoxicity was observed after a 2.5-h pretreatment with 0.125 $\mu$g/ml Herb A. Inhibition occurred over a period in pretreatment which LAK were not dependent upon IL-2 for maintenance of killing activity, supporting the conclusion that the drug interfered with mobilization of cytotoxic function. Granule exocytosis measured by BLT-esterase release from LAK occurred after coincubation with tumors, and was inhibited by Herb A LAK cytotoxicity was dependent upon extracellular calcium, suggesting that granule exocytosis rather than Fas ligand was the principal pathway leading to target cell death. The data indicate that protein tyrosine kinases play a pivotal role in LAK cytolytic function by regulating granule exocytosis, and that tumor targets can activate an adhesion dependent Ser kinase pathway in LAK resulting in phosphorylation of L-plastin. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Philadelphia chromosome (Ph)-positive chronic myeloid leukemia is caused by a clonal myeloproliferative expansion of malignant primitive hematopoietic progenitor cells. The Ph results from the reciprocal translocation of the ends of chromosome 9 and 22, which generate Bcr-Abl fusion proteins. The Bcr-Abl proteins possess a constitutively activated Abl tyrosine kinase, which is the driving force responsible for causing leukemia. The activated Bcr-Abl tyrosine kinase stimulates multiple signal transduction pathway affecting growth, differentiation and survival of cells. It is known that the Bcr-Abl tyrosine kinase activates several signaling proteins including Stat5, which is a member of the Jak/Stat pathway that is activated by cytokines that control the growth and differentiation of normal hematopoietic cells. Our laboratory was the first one to report that Jak2 tyrosine kinase is activated in a human Bcr-Abl positive hematopoietic cell line. In this thesis, we further investigated the activation of Jak2 by Bcr-Abl. We found that Jak2 is activated not only in cultured Bcr-abl positive cell lines but also in blood cells from CML blast crisis patients. We also demonstrated that SH2 domain of Bcr-Abl is required for efficient activation Jak2. We further showed that Jak2 binds to the C-terminal domain of Bcr-Abl; tyrosine residue 1007, which is critical for Jak2 activation, is phosphorylated by Bcr-Abl. We searched downstream targets of Jak2 in Bcr-Abl positive cells. We treated Bcr-Abl positive cells with a Jak2 kinase inhibitor AG490 and found that c-Myc protein expression is inhibited by AG490. We further demonstrated that Jak2 inhibitor AG490 not only inhibit C-MYC transcription but also protect c-Myc protein from proteasome-dependent degradation. We also showed that AG490 did not affect Bcr-Abl kinase activity and Stat5 activation and its downstream target Bcl-xL expression. AG490 also induced apoptosis of Bcr-Abl positive cells, similar to Bcr-Abl kinase inhibitor STI571 (also termed Gliveec, a very effective drug for CML), but unlike STI571 the apoptosis effects induced by AG490 can not be rescued by IL-3 containing WEHI conditioned medium. We further established several Bcr-Abl positive clones that express a kinase-inactive Jak2 and found that these clones had reduced tumor formation in nude mice assays. Taken together, these results establish that Jak2 is activated in Bcr-Abl positive CML cells and it is required for c-Myc induction and the oncogenic effects of Bcr-Abl. Furthermore, Jak2 and Stat5 are two independent targets of Bcr-Abl. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intracellular signals governing cellular proliferation and developmental progression during lymphocyte development are incompletely understood. The tyrosine kinase Blk is expressed preferentially in the B lineage, but its function in B cell development has been largely unexplored. We have generated transgenic mice expressing constitutively active Blk [Blk(Y495F)] in the B and T lymphoid compartments. Expression of Blk(Y495F) in the B lineage at levels similar to that of endogenous Blk induced B lymphoid tumors of limited clonality, whose phenotypes are characteristic of B cell progenitors at the proB/preB-I to preB-II transition. Expression of constitutively active Blk in the T lineage resulted in the appearance of clonal, thymic lymphomas composed of intermediate single positive cells. Taken together, these results indicate that specific B and T cell progenitor subsets are preferentially susceptible to transformation by Blk(Y495F) and suggest a role for Blk in the control of proliferation during B cell development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ubiquitously expressed nonreceptor tyrosine kinase c-Abl contains three nuclear localization signals, however, it is found in both the nucleus and the cytoplasm of proliferating fibroblasts. A rapid and transient loss of c-Abl from the nucleus is observed upon the initial adhesion of fibroblasts onto a fibronectin matrix, suggesting the possibility of nuclear export [Lewis, J., Baskaran, R., Taagepera, S., Schwartz, M. & Wang, J. (1996) Proc. Natl. Acad. Sci. USA 93, 15174–15179]. Here we show that the C terminus of c-Abl does indeed contain a functional nuclear export signal (NES) with the characteristic leucine-rich motif. The c-Abl NES can functionally complement an NES-defective HIV Rev protein (RevΔ3NI) and can mediate the nuclear export of glutathione-S-transferase. The c-Abl NES function is sensitive to the nuclear export inhibitor leptomycin B. Mutation of a single leucine (L1064A) in the c-Abl NES abrogates export function. The NES-mutated c-Abl, termed c-Abl NES(−), is localized exclusively to the nucleus. Treatment of cells with leptomycin B also leads to the nuclear accumulation of wild-type c-Abl protein. The c-Abl NES(−) is not lost from the nucleus when detached fibroblasts are replated onto fibronectin matrix. Taken together, these results demonstrate that c-Abl shuttles continuously between the nucleus and the cytoplasm and that the rate of nuclear import and export can be modulated by the adherence status of fibroblastic cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Heterotrimeric G proteins and tyrosine kinases are two major cellular signal transducers. Although G proteins are known to activate tyrosine kinases, the activation mechanism is not clear. Here, we demonstrate that G protein Gqα binds directly to the nonreceptor Bruton’s tyrosine kinase (Btk) to a region composed of a Tec-homology (TH) domain and a sarcoma virus tyrosine kinase (Src)-homology 3 (SH3) domain both in vitro and in vivo. Only active GTP-bound Gqα, not inactive GDP-bound Gqα, can bind to Btk. Mutations of Btk that disrupt its ability to bind Gqα also eliminate Btk stimulation by Gqα, suggesting that this interaction is important for Btk activation. Remarkably, the structure of this TH (including a proline-rich sequence) -SH3 fragment of the Btk family of tyrosine kinases shows an intramolecular interaction. Furthermore, the crystal structure of the Src family of tyrosine kinases reveals that the intramolecular interaction of SH3 and its ligand is the major determining factor keeping the kinase inactive. Thus, we propose an activation model that entails binding of Gqα to the TH-SH3 region, thereby disrupting the TH-SH3 intramolecular interaction and activating Btk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Synapsin I is a synaptic vesicle-associated phosphoprotein that has been implicated in the formation of presynaptic specializations and in the regulation of neurotransmitter release. The nonreceptor tyrosine kinase c-Src is enriched on synaptic vesicles, where it accounts for most of the vesicle-associated tyrosine kinase activity. Using overlay, affinity chromatography, and coprecipitation assays, we have now shown that synapsin I is the major binding protein for the Src homology 3 (SH3) domain of c-Src in highly purified synaptic vesicle preparations. The interaction was mediated by the proline-rich domain D of synapsin I and was not significantly affected by stoichiometric phosphorylation of synapsin I at any of the known regulatory sites. The interaction of purified c-Src and synapsin I resulted in a severalfold stimulation of tyrosine kinase activity and was antagonized by the purified c-Src-SH3 domain. Depletion of synapsin I from purified synaptic vesicles resulted in a decrease of endogenous tyrosine kinase activity. Portions of the total cellular pools of synapsin I and Src were coprecipitated from detergent extracts of rat brain synaptosomal fractions using antibodies to either protein species. The interaction between synapsin I and c-Src, as well as the synapsin I-induced stimulation of tyrosine kinase activity, may be physiologically important in signal transduction and in the modulation of the function of axon terminals, both during synaptogenesis and at mature synapses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein kinases play central roles in the regulation of eukaryotic and prokaryotic cell growth, division, and differentiation. The Caulobacter crescentus divL gene encodes a novel bacterial tyrosine kinase essential for cell viability and division. Although the DivL protein is homologous to the ubiquitous bacterial histidine protein kinases (HPKs), it differs from previously studied members of this protein kinase family in that it contains a tyrosine residue (Tyr-550) in the conserved H-box instead of a histidine residue, which is the expected site of autophosphorylation. DivL is autophosphorylated on Tyr-550 in vitro, and this tyrosine residue is essential for cell viability and regulation of the cell division cycle. Purified DivL also catalyzes phosphorylation of CtrA and activates transcription in vitro of the cell cycle-regulated fliF promoter. Suppressor mutations in ctrA bypass the conditional cell division phenotype of cold-sensitive divL mutants, providing genetic evidence that DivL function in cell cycle and developmental regulation is mediated, at least in part, by the global response regulator CtrA. DivL is the only reported HPK homologue whose function has been shown to require autophosphorylation on a tyrosine, and, thus, it represents a new class of kinases within this superfamily of protein kinases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blastic transformation of chronic myelogenous leukemia (CML) is characterized by the presence of nonrandom, secondary genetic abnormalities in the majority of Philadelphia1 clones, and loss of p53 tumor suppressor gene function is a consistent finding in 25–30% of CML blast crisis patients. To test whether the functional loss of p53 plays a direct role in the transition of chronic phase to blast crisis, bone marrow cells from p53+/+ or p53−/− mice were infected with a retrovirus carrying either the wild-type BCR/ABL or the inactive kinase-deficient mutant, and were assessed for colony-forming ability. Infection of p53−/− marrow cells with wild-type BCR/ABL, but not with the kinase-deficient mutant, enhanced formation of hematopoietic colonies and induced growth factor independence at high frequency, as compared with p53+/+ marrow cells. These effects were suppressed when p53−/− marrow cells were coinfected with BCR/ABL and wild-type p53. p53-deficient BCR/ABL-infected marrow cells had a proliferative advantage, as reflected by an increase in the fraction of S+G2 phase cells and a decrease in the number of apoptotic cells. Immunophenotyping and morphological analysis revealed that BCR/ABL-positive p53−/− cells were much less differentiated than their BCR/ABL-positive p53+/+ counterparts. Injection of immunodeficient mice with BCR/ABL-positive p53−/− cells produced a transplantable, highly aggressive, poorly differentiated acute myelogenous leukemia. In marked contrast, the disease process in mice injected with BCR/ABL-positive p53+/+ marrow cells was characterized by cell infiltrates with a more differentiated phenotype and was significantly retarded, as indicated by a much longer survival of leukemic mice. Together, these findings directly demonstrate that loss of p53 function plays an important role in blast transformation in CML.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Src family tyrosine kinases are involved in modulating various signal transduction pathways leading to the induction of DNA synthesis and cytoskeletal reorganization in response to cell-cell or cell-matrix adhesion. The critical role of these kinases in regulating cellular signaling pathways requires that their activity be tightly controlled. Src family proteins are regulated through reversible phosphorylation and dephosphorylation events that alter the conformation of the kinase. We have found evidence that Src also is regulated by ubiquitination. Activated forms of Src are less stable than either wild-type or kinase-inactive Src mutants and can be stabilized by proteasome inhibitors. In addition, poly-ubiquitinated forms of active Src have been detected in vivo. Taken together, our results establish ubiquitin-mediated proteolysis as a previously unidentified mechanism for irreversibly attenuating the effects of active Src kinase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

cABL is a protooncogene, activated in a subset of human leukemias, whose protein product is a nonreceptor tyrosine kinase of unknown function. cABL has a complex structure that includes several domains and motifs found in proteins implicated in signal transduction pathways. An approach to elucidate cABL function is to identify proteins that interact directly with cABL and that may serve as regulators or effectors of its activity. To this end, a protein-interaction screen of a phage expression library was undertaken to identify proteins that interact with specific domains of cABL. An SH3-domain-containing protein has been identified that interacts with sequences in the cABL carboxyl terminus. The cDNA encoding ALP1 (amphiphysin-like protein 1) was isolated from a 16-day mouse embryo. ALP1 has high homology to BIN1, a recently cloned myc-interacting protein, and also shows significant homology to amphiphysin, a neuronal protein cloned from human and chicken. The amino terminus has homology to two yeast proteins, Rvs167 and Rvs161, which are involved in cell entry into stationary phase and cytoskeletal organization. ALP1 binds cABL in vitro and in vivo. Expression of ALP1 results in morphological transformation of NIH 3T3 fibroblasts in a cABL-dependent manner. The properties of ALP1 suggest that it may be involved in possible cytoskeletal functions of the cABL kinase. Additionally, these results provide further evidence for the importance of the cABL carboxyl terminus and its binding proteins in the regulation of cABL function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sik, the mouse homologue of the breast tumor kinase Brk, is expressed in differentiating cells of the gastrointestinal tract and skin. We examined expression and activity of Sik in primary mouse keratinocytes and a mouse embryonic keratinocyte cell line (EMK). Calcium-induced differentiation of these cells has been shown to be accompanied by the activation of tyrosine kinases and rapid phosphorylation of a 65-kDa GTPase-activating protein (GAP)-associated protein (GAP-A.p65). We demonstrate that Sik is activated within 2 min after calcium addition in primary keratinocytes and EMK cells. In EMK cells, Sik binds GAP-A.p65, and this interaction is mediated by the Sik Src homology 2 domain. Although Sik directly complexes with GAP-A.p65, overexpression of wild-type or kinase defective Sik in EMK cells does not lead to detectable changes in GAP-A.p65 phosphorylation. These data suggest that Sik is not responsible for phosphorylation of GAP-A.p65. GAP-A.p65 may act as an adapter protein, bringing Sik into proximity of an unidentified substrate. Overexpression of Sik in EMK cells results in increased expression of filaggrin during differentiation, supporting a role for Sik in differentiation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The scatter factor/hepatocyte growth factor regulates scattering and morphogenesis of epithelial cells through activation of the MET tyrosine kinase receptor. In particular, the noncatalytic C-terminal tail of MET contains two autophosphorylation tyrosine residues, which form a multisubstrate-binding site for several cytoplasmic effectors and are thought to be essential for signal transduction. We show here that a MET receptor mutated on the four C-terminal tyrosine residues, Y1311F, Y1347F, Y1354F, and Y1363F, can induce efficiently a transcriptional response and cell scattering, whereas it cannot induce cell morphogenesis. Although the mutated receptor had lost its ability to recruit and/or activate known signaling molecules, such as GRB2, SHC, GAB1, and PI3K, by using a sensitive association–kinase assay we found that the mutated receptor can still associate and phosphorylate a ∼250-kDa protein. By further examining signal transduction mediated by the mutated MET receptor, we established that it can transmit efficient RAS signaling and that cell scattering by the mutated MET receptor could be inhibited by a pharmacological inhibitor of the MEK-ERK (MAP kinase kinase–extracellular signal-regulated kinase) pathway. We propose that signal transduction by autophosphorylation of the C-terminal tyrosine residues is not the sole mechanism by which the activated MET receptor can transmit RAS signaling and cell scattering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Integrin receptors play a central role in the biology of lymphocytes, mediating crucial functional aspects of these cells, including adhesion, activation, polarization, migration, and signaling. Here we report that induction of activation of the β2-integrin lymphocyte function-associated antigen 1 (LFA-1) in T lymphocytes with divalent cations, phorbol esters, or stimulatory antibodies is followed by a dramatic polarization, resulting in a characteristic elongated morphology of the cells and the arrest of migrating lymphoblasts. This cellular polarization was prevented by treatment of cells with the specific tyrosine kinase inhibitor genistein. Furthermore, the interaction of the activated integrin LFA-1 with its ligand intercellular adhesion molecule 1 induced the activation of the cytoplasmic tyrosine kinases focal adhesion kinase (FAK) and proline-rich tyrosine kinase 2 (PYK-2). FAK activation reached a maximum after 45 min of stimulation; in contrast, PYK-2 activation peaked at 30 min, declining after 60 min. Upon polarization of lymphoblasts, FAK and PYK-2 redistributed from a diffuse localization in the cytoplasm to a region close to the microtubule-organizing center in these cells. FAK and PYK-2 activation was blocked when lymphoblasts were pretreated with actin and tubulin cytoskeleton-interfering agents, indicating its cytoskeletal dependence. Our results demonstrate that interaction of the β2-integrin LFA-1 with its ligand intercellular adhesion molecule 1 induces remodeling of T lymphocyte morphology and activation and redistribution of the cytoplasmic tyrosine kinases FAK and PYK-2.