982 resultados para type II superlattice


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Type II diabetes is characterised by hyperglycemia and disturbances of fat, carbohydrate and protein metabolism. It occurs mainly in adults, with obesity being the most modifiable risk factor. This project utilised the Israeli Sand Rat (Psammomys obesus) and some of the latest molecular biology technology including differential display, membrane microarray and real-time PCR to detect genes in the liver that may be associated with the development of Type II diabetes and/or obesity. This study showed calpain, a proteolytic inhibitor and calpastatin, its natural inhibitor to be disregulated in the liver during the diabetic state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The gene cluster gspCDEFGHIJKLM codes for various structural components of the type II secretion pathway which is responsible for the secretion of heat-labile enterotoxin by enterotoxigenic Escherichia coli (ETEC). In this work, we used a variety of molecular approaches to elucidate the transcriptional organization of the ETEC type II secretion system and to unravel the mechanisms by which the expression of these genes is controlled. We showed that the gspCDEFGHIJKLM cluster and three other upstream genes, yghJ, pppA, and yghG, are cotranscribed and that a promoter located in the upstream region of yghJ plays a major role in the expression of this 14-gene transcriptional unit. Transcription of the yghJ promoter was repressed 168-fold upon a temperature downshift from 37°C to 22°C. This temperature-induced repression was mediated by the global regulatory proteins H-NS and StpA. Deletion mutagenesis showed that the promoter region encompassing positions −321 to +301 relative to the start site of transcription of yghJ was required for full repression. The yghJ promoter region is predicted to be highly curved and bound H-NS or StpA directly. The binding of H-NS or StpA blocked transcription initiation by inhibiting promoter open complex formation. Unraveling the mechanisms of regulation of type II secretion by ETEC enhances our understanding of the pathogenesis of ETEC and other pathogenic varieties of E. coli.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Enteropathogenic Escherichia coli (EPEC) is a major cause of diarrhea in infants in developing countries. We have identified a functional type II secretion system (T2SS) in EPEC that is homologous to the pathway responsible for the secretion of heat-labile enterotoxin by enterotoxigenic E. coli. The wild-type EPEC T2SS was able to secrete a heat-labile enterotoxin reporter, but an isogenic T2SS mutant could not. We showed that the major substrate of the T2SS in EPEC is SslE, an outer membrane lipoprotein (formerly known as YghJ), and that a functional T2SS is essential for biofilm formation by EPEC. T2SS and SslE mutants were arrested at the microcolony stage of biofilm formation, suggesting that the T2SS is involved in the development of mature biofilms and that SslE is a dominant effector of biofilm development. Moreover, the T2SS was required for virulence, as infection of rabbits with a rabbit-specific EPEC strain carrying a mutation in either the T2SS or SslE resulted in significantly reduced intestinal colonization and milder disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we show that we can generate neutrino masses through the type II seesaw mechanism working at TeV scale in the context of a 331 model. (C) 2001 Published by Elsevier B.V. B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We derive the torsion constraints and show the consistency of equations of motion of four-dimensional Type II supergravity in superspace. with Type II sigma model. This is achieved by coupling the four-dimensional compactified Type II Berkovits' superstring to an N = 2 curved background and requiring that the sigma-model has superconformal invariance at tree-level. We compute this in a manifestly 4D N = 2 supersymmetric way. The constraints break the target conformal and SU(2) invariances and the dilaton will be a conformal, SU(2) x U(1) compensator. For Type II superstring in four dimensions, worldsheet supersymmetry requires two different compensators. One type is described by chiral and anti-chiral superfields. This compensator can be identified with a vector multiplet. The other Type II compensator is described by twist-chiral and twist-anti-chiral superfields and can be identified with a tensor hypermultiplet. Also, the superconformal invariance at tree-level selects a particular gauge, where the matter is fixed, but not the compensators. After imposing the reality conditions, we show that the Type II sigma model at tree-level is consistent with the equations of motion for Type II supergravity in the string gauge. (C) 2003 Elsevier B.V All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze the dynamics of a driven vortex lattice moving in a thin Superconducting stripe. The two dimensional stripe is assumed to be finite in the longitudinal direction, where we take into account the Surface effects, and infinite in the transversal direction. The numerical simulations are performed using the Langevin dynamics, including the vortex-vortex interaction, interaction of vortices with the surface current, vortex images, transport current and randomly distributed pinning centers. We show results for the differential resistivity and the vortex trajectories as a function of the external force. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: In recent years, important advances have occurred in the determination of diagnostic criteria for the disease diabetes mellitus and in new strategies for its treatment. The purpose of this research was to develop a new method for diabetes diagnosis by microscopic and cytomorphometric analyses of the oral epithelium. Methods: the smears were obtained from three distinct oral sites: buccal mucosa (cheek), tongue dorsum, and floor of the mouth in 10 control individuals and 10 type II diabetic patients. The oral smears were stained with Papanicolaou EA-36 solution. The nuclear (NA) and cytoplasmic (CA) areas were evaluated from 50 integral cells predominant in each oral site by the use of the KS 300(TM) image analysis system (Carl Zeiss, Germany), by which the cytoplasmic/nuclear ratio (C/N) was calculated. Results: the results showed that: (i) the epithelial cells of the diabetic group exhibited figures of binucleation and occasional karyorrhexis in all layers; (ii) the NA was markedly higher (P<0.05) in the diabetic group; (iii) the CA did not exhibit a statistically significant difference (P>0.05) between these two groups; and (iv) the C/N mean was 37.4% lower in the type II diabetic group. Conclusions: These results associated with clinical observations suggest that diabetes mellitus can produce alterations in oral epithelial cells, detectable by microscopy and cytomorphometry, which can be used in the diagnosis of this disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sigma model action with N = 2 D = 6 superspace variables is constructed for the Type II superstring compactified to six curved dimensions with Ramond - Ramond flux. The action can be quantized since the sigma model is linear when the six-dimensional space-time is flat. When the six-dimensional space-time is AdS 3 × S 3, the action reduces to one found earlier with Vafa and Witten. © 2000 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Type II Bartter's syndrome is a hereditary hypokalemic renal salt-wasting disorder caused by mutations in the ROMK channel (Kir1.1; Kcnj1), mediating potassium recycling in the thick ascending limb of Henle's loop (TAL) and potassium secretion in the distal tubule and cortical collecting duct (CCT). Newborns with Type II Bartter are transiently hyperkalemic, consistent with loss of ROMK channel function in potassium secretion in distal convoluted tubule and CCT. Yet, these infants rapidly develop persistent hypokalemia owing to increased renal potassium excretion mediated by unknown mechanisms. Here, we used free-flow micropuncture and stationary microperfusion of the late distal tubule to explore the mechanism of renal potassium wasting in the Romk-deficient, Type II Bartter's mouse. We show that potassium absorption in the loop of Henle is reduced in Romk-deficient mice and can account for a significant fraction of renal potassium loss. In addition, we show that iberiotoxin (IBTX)-sensitive, flow-stimulated maxi-K channels account for sustained potassium secretion in the late distal tubule, despite loss of ROMK function. IBTX-sensitive potassium secretion is also increased in high-potassium-adapted wild-type mice. Thus, renal potassium wasting in Type II Bartter is due to both reduced reabsorption in the TAL and K secretion by max-K channels in the late distal tubule. © 2006 International Society of Nephrology.