944 resultados para transition metal alloys and compounds
Resumo:
This work evaluates the glass formation of selected alloys based on the Ti-Zr-Fe-Co system, assuming the synergy of two distinct criteria: minimum topological instability and average electronegativity plots. Combining the minimum topological instability and the average electronegativity values result in a plot in which the most probable good glass former compositions are identified Ti-Zr rich alloys with Fe and Co additions were produced, compared against the final plot, and the best glass forming alloy composition was found to be very close the theoretically predicted ones on the Ti-Zr rich side, for both Ti-Zr-Fe and Ti-Zr-Co systems. (C) 2009 Elsevier B V All rights reserved
Resumo:
A two-step method of loading controlled amounts of transition metal cations into alumina pillared clays (Al-PILCs) is proposed. First, calcined Al-PILC was dispersed into an aqueous solution of sodium or ammonium ions. Increasing the pH of the dispersion resulted in an increase in the amount of cations loaded into the clay. The ion-doped Al-PILC was then exchanged with an aqueous solution of transition metal salt at a pH of similar to 4.5 to replace Na+ or NH4+ ions by transition metal cations. Analytical techniques such as atomic absorption spectroscopy, X-ray diffraction, diffuse reflectance-ultraviolet-visible spectroscopy, as well as N-2 adsorption were used to characterize the PILC products with and without the loading of metal ions. The introduced transition metal species exist in the forms of hydrated ions in the PILC hosts. The content of transition metal ions in the final product increased with the amount of Na+ or NH4+ loaded in the first step so that by controlling the pH of the dispersion in the first step, one can control the doping amounts of transition metal cations into Al-PILCs. A sample containing 0.125 mmol/g of nickel was thus obtained, which is similar to 3 times of that obtained by directly exchanging Al-PILC with Ni(NO3)(2) solution, while the pillared layered structures of the Al-PILC remained. The porosity analysis using N-2 adsorption data indicated that most of the doped transition metal ions dispersed homogeneously in the micropores of the Al-PILC, significantly affecting the micropore structure.
Resumo:
Due to their numerous novel technological applications ranging from the example of exhaust catalysts in the automotive industry to the catalytic production of hydro- gen, surface reactions on transition metal substrates have become to be one of the most essential subjects within the surface science community. Although numerous applications exist, there are many details in the different processes that, after many decades of research, remain unknown. There are perhaps as many applications for the corrosion resistant materials such as stainless steels. A thorough knowledge of the details of the simplest reactions occuring on the surfaces, such as oxidation, play a key role in the design of better catalysts, or corrosion resistant materials in the future. This thesis examines the oxidation of metal surfaces from a computational point of view mostly concentrating on copper as a model material. Oxidation is studied from the initial oxidation to the oxygen precovered surface. Important parameters for the initial sticking and dissociation are obtained. The saturation layer is thoroughly studied and the calculated results arecompared with available experimental results. On the saturated surface, some open questions still remain. The present calculations demonstrate, that the saturated part of the surface is excluded from being chemically reactive towards the oxygen molecules. The results suggest, that the reason for the chemical activity of the saturated surface is due to a strain effect occuring between the saturated areas of the surface.
Resumo:
A spectrophotometric method was proposed for Ni(II) determination in alloys using a dopa-semiquinone (L-1) to form [Ni(II)(L1-)3]1-, ε = 9.3 x 10³ L mol-1 cm-1. The optimal conditions for the determination were: wavelength 590 nm, temperature 25 °C, reaction time 45 min and pH 7.5. The Beer's law was obeyed for nickel from 3.33 x 10-5 to 1.78 x 10-4 mol L-1. The method was applied to complex samples, such as inox, nickel-titanium and cobalt-chromium alloys. A study of the potential interferents revealed that Mn was the major interferent. The limit of detection and quantification were 2.88 x 10-5 mol L-1 and 3.06 x 10-5 mol L-1, respectively.
Resumo:
The stability constants of the 1:1 complexes formed between M2+ (M2+: Mn2+, Ni2+, Cu2+, or Cd2+) and BMADA2- (BMADA: 2,2'-(5-bromo-6-methylpyrimidine-2,4 diyl)bis(azanediyl)dipropanoic acid) were determined by potentiometric pH titration in aqueous solution (I = 0.1 mol L-1, NaNO3, 25 °C). The stability of the binary M - BMADA complexes is determined by the basicity of the carboxyl or amino groups. All the stability constants reported in this work exhibit the usual trend, and the order obtained was Mn2+< Ni2+ < Cu2+ > Cd2+. The observed stability order for BMADA approximately follows the Irving - Williams sequence. In the M - BMADA complexes, the M ion is able to form a macrochelate via the pyrimidine group of BMADA.
Resumo:
By alloying metals with other materials, one can modify the metal’s characteristics or compose an alloy which has certain desired characteristics that no pure metal has. The field is vast and complex, and phenomena that govern the behaviour of alloys are numerous. Theories cannot penetrate such complexity, and the scope of experiments is also limited. This is why the relatively new field of ab initio computational methods has much to give to this field. With these methods, one can extend the understanding given by theories, predict how some systems might behave, and be able to obtain information that is not there to see in physical experiments. This thesis pursues to contribute to the collective knowledge of this field in the light of two cases. The first part examines the oxidation of Ag/Cu, namely, the adsorption dynamics and oxygen induced segregation of the surface. Our results demonstrate that the presence of Ag on the Cu(100) surface layer strongly inhibits dissociative adsorption. Our results also confirmed that surface reconstruction does happen, as experiments predicted. Our studies indicate that 0.25 ML of oxygen is enough for Ag to diffuse towards the bulk, under the copper oxide layer. The other part elucidates the complex interplay of various energy and entropy contributions to the phase stability of paramagnetic duplex steel alloys. We were able to produce a phase stability map from first principles, and it agrees with experiments rather well. Our results also show that entropy contributions play a very important role on defining the phase stability. This is, to the author’s knowledge, the first ab initio study upon this subject.
Resumo:
In this study we discuss the atomic level phenomena on transition metal surfaces. Transition metals are widely used as catalysts in industry. Therefore, reactions occuring on transition metal surfaces have large industrial intrest. This study addresses problems in very small size and time scales, which is an important part in the overall understanding of these phenomena. The publications of this study can be roughly divided into two categories: The adsorption of an O2 molecule to a surface, and surface structures of preadsorbed atoms. These two categories complement each other, because in the realistic case there are always some preadsorbed atoms at the catalytically active surfaces. However, all transition metals have an active d-band, and this study is also a study of the in uence of the active d-band on other atoms. At the rst part of this study we discuss the adsorption and dissociation of an O2 molecule on a clean stepped palladium surface and a smooth palladium surface precovered with sulphur and oxygen atoms. We show how the reactivity of the surface against the oxygen molecule varies due to the geometry of the surface and preadsorbed atoms. We also show how the molecular orbitals of the oxygen molecule evolve when it approaches the di erent sites on the surface. In the second part we discuss the surface structures of transition metal surfaces. We study the structures that are intresting on account of the Rashba e ect and charge density waves. We also study the adsorption of suphur on a gold surface, and surface structures of it. In this study we use ab-initio based density functional theory methods to simulate the results. We also compare the results of our methods to the results obtained with the Low-Energy-Electron-Difraction method.
Resumo:
The thesis deals with the preparation of chemical, optical, thermal and electrical characterization of five compounds, namely metal free naphthalocyanine, vanadyl napthalocyanine, zinc naphlocyanine, europium dinaphthalocyanine, and europium diphthalocyanine in the pristine and iodine-doped forms. Two important technological properties of these compounds have been investigated. The electrical properties are important in applications sensors and semiconductor lasers. Opto-thermal properties assume significance for optical imaging and data recording. The electrical properties were investigated by dc and ac techniques. This work has revealed some novel information on the conduction mechanism in five macrocyclic compounds and their iodine-doped forms. Also useful data on the thermal diffusivity of the target compounds have been obtained by optical techniques.
Studies on Some Transition Metal Complexes of Schiff Bases Derived from Quinoxaline-2-carboxaldehyde
Resumo:
Two series of transition metal complexes of Schiff bases derived from quinoxaline-2-carboxaldehyde with semicarbazide (QSC) and furfurylamine (QFA) were synthesised and characterised by elemental analyses, molar conductance and magnetic susceptibility measurements, IR, electronic and EPR spectral studies. The QSC complexes have the general formula [M(QSC)Cl2]. A tetrahedral structure has been assigned for the Mn(II), Co(II) and Ni(II) complexes and a square-planar structure for the Cu(II) complex. The QFA complexes have the formula [M(QFA)2Cl2]. An octahedral structure has been assigned for these complexes. All of the complexes exhibit catalytic activity towards the oxidation of 3,5-di-tert-butylcatechol (DTBC) to 3,5-di-tert-butylquinone (DTBQ) using atmospheric oxygen. The cobalt(II) complex of the ligand QFA was found to be the most active catalyst.
Resumo:
Department of Applied Chemistry, Cochin University of Science and Technology
Resumo:
In the present work, we have tried to evaluate systematically the surface properties of sulphated tin oxide systems modified with three different transition metal oxides viz. iron oxide, tungsten oxide and molybdenum oxide. The catalytic activities of these systems are checked and compared by carrying out some industrially important reactions such as oxidative dehydrogenation of ethylbenzene and Friedel-Crafts reactions.
Resumo:
The present project was a systematic investigation of the physico-chemical properties and catalytic activity of some transition metal promoted sulphated zirconia systems. The characterisation and catalytic activity results were compared with that of pure Zr02 and simple sulphated zirconia systems. Sulphated zirconia samples were prepared by a controlled impregnation technique. In the case of metal incorporated systems, a single step impregnation was carried out using required amounts of sulphuric acid and metal salt solutions. As a preliminary step, optimisation of calcination temperature and sulphate content was achieved. For further studies, the optimised sulphate loading of 10 ml per gram of hydrous zirconium oxide and a calcination temperature of 700°C was employed. Metal incorporation had a positive influence on the physico-chemical properties. Vapour phase cumene conversion served as a test reaction for acidity. Some industrially important reactions like Friedel-Crafts reaction, phenol hydroxylation, nitration, etc. were selected to test the catalytic activity of the prepared systems.
Resumo:
The current work deals with the synthesis and characterization of metal complexes derived from some substituted acylhydrazones. The hydrazones under investigation were characterized by IR, UV, NMR spectral studies and the molecular structure of one of the hydrazones was solved by single crystal XRD studies. In the present work dioxovanadium(V), manganese(II), cobalt(II/III), nickel(II), copper(II), zinc(II) and cadmium(II) complexes were synthesized and characterized by various spectroscopic techniques, molar conductance measurements, magnetic susceptibility measurements and cyclic voltammetry. Single crystals of some of the complexes were isolated and characterized by single crystal X-ray diffraction.The thesis is divided into eight chapters. Chapter 1 gives an introduction on hydrazones, diversity in their chelating behavior and their application in various fields. This chapter also describes different analytical techniques employed for the characterization of hydrazones and their metal complexes. Chapter 2 includes the synthesis and characterization of two substituted acylhydrazones. This chapter also discusses how the coordination behavior of hydrazones under investigation is interesting. Chapters 3-8 discuss the synthesis and characterization of some transition metal complexes derived from the acylhydrazones under study.The hydrazones synthesized were found to exist in the amido form. Various characterization techniques were carried out to explore the structure of the synthesized complexes. The results indicate that both the hydrazones coordinate through the pyridyl and azomethine nitrogens and amide oxygen either in enolate or neutral form. Out of synthesized complexes V(V), Zn/Cd(II) and one of the cobalt complex was found to diamagnetic. We could isolate single crystals of some of the complexes and most of the complexes crystallized were found to have a distorted octahedral geometry. Thus X-ray crystallographic study which was used as major tool in the structure determination revealed that the hydrazones undergo a rotation about the azomethine bond on complexation. We hope the work presented in the thesis would be helpful for those who are working in the field of metal complexes and can further they can be utilized for various applications.