994 resultados para tissue preparation
Resumo:
Dental implant materials are required to enable good apposition of bone and soft tissues. They must show sufficient resistance to chemical, physical and biological stress in the oral cavity to achieve good long-term outcomes. A critical issue is the apposition of the soft tissues, as they have provided a quasi-physiological closure of oral cavity. The present experiment was performed to study the peri-implant tissue response to non-submerged (1-stage) implant installation procedures. Two different implants types (NobelBiocare, NobelReplace (R) Tapered Groovy 4.3 x 10 mm and Replace (R) Select Tapered TiU RP 4.3 x 10 mm) were inserted into the right and left sides of 8 domestic pigs (Sus scrofa domestica) mandibles, between canines and premolars and immediately provided with a ceramic crown. Primary implant stability was determined using ressonance frequency analysis. Soft tissue parameters were assessed: sulcus depth (SDI) and junctional epithelium (JE). Following 70 days of healing, jaw sections were processed for histology and histomorphometric examination. Undecalcified histological sections demonstrated osseointegration with direct bone contact. The soft tissue parameters revealed no significant differences between the two implant types. The peri-implant soft tissues appear to behave similarly in both implant types.
Resumo:
Background: Envenoming by viper snakes constitutes an important public health problem in Brazil and other developing countries. Local hemorrhage is an important symptom of these accidents and is correlated with the action of snake venom metalloproteinases (SVMPs). The degradation of vascular basement membrane has been proposed as a key event for the capillary vessel disruption. However, SVMPs that present similar catalytic activity towards extracellular matrix proteins differ in their hemorrhagic activity, suggesting that other mechanisms might be contributing to the accumulation of SVMPs at the snakebite area allowing capillary disruption. Methodology/Principal Findings: In this work, we compared the tissue distribution and degradation of extracellular matrix proteins induced by jararhagin (highly hemorrhagic SVMP) and BnP1 (weakly hemorrhagic SVMP) using the mouse skin as experimental model. Jararhagin induced strong hemorrhage accompanied by hydrolysis of collagen fibers in the hypodermis and a marked degradation of type IV collagen at the vascular basement membrane. In contrast, BnP1 induced only a mild hemorrhage and did not disrupt collagen fibers or type IV collagen. Injection of Alexa488-labeled jararhagin revealed fluorescent staining around capillary vessels and co-localization with basement membrane type IV collagen. The same distribution pattern was detected with jararhagin-C (disintegrin-like/cysteine-rich domains of jararhagin). In opposition, BnP1 did not accumulate in the tissues. Conclusions/Significance: These results show a particular tissue distribution of hemorrhagic toxins accumulating at the basement membrane. This probably occurs through binding to collagens, which are drastically hydrolyzed at the sites of hemorrhagic lesions. Toxin accumulation near blood vessels explains enhanced catalysis of basement membrane components, resulting in the strong hemorrhagic activity of SVMPs. This is a novel mechanism that underlies the difference between hemorrhagic and non-hemorrhagic SVMPs, improving the understanding of snakebite pathology.
Resumo:
Methyl esters were prepared by the clean, one-step catalytic esterification of primary alcohols using molecular oxygen as a green oxidant and a newly developed SiO(2)-supported gold nanoparticle catalyst. The catalyst was highly active and selective in a broad range of pressure and temperature. At 3 atm O(2) and 130 degrees C benzyl alcohol was converted to methyl benzoate with 100% conversion and 100% selectivity in 4 h of reaction. This catalytic process is much ""greener"" than the conventional reaction routes because it avoids the use of stoichiometric environmentally unfriendly oxidants, usually required for alcohol oxidation, and the use of strong acids or excess of reactants or constant removal of products required to shift the equilibrium to the desired esterification product.
Resumo:
In this study we have used fluorescence spectroscopy to determine the post-mortem interval. Conventional methods in forensic medicine involve tissue or body fluids sampling and laboratory tests, which are often time demanding and may depend on expensive analysis. The presented method consists in using time-dependent variations on the fluorescence spectrum and its correlation with the time elapsed after regular metabolic activity cessation. This new approach addresses unmet needs for post-mortem interval determination in forensic medicine, by providing rapid and in situ measurements that shows improved time resolution relative to existing methods. (C) 2009 Optical Society of America
Resumo:
The flagellated protozoan parasite Trypanosoma cruzi is the aetiological agent of Chagas disease. Nucleoside diphosphate kinases (NDPKs) are enzymes that are involved in energy management and nucleoside balance in the cell. T. cruzi TcNDPK1, a canonical isoform, was overexpressed in Escherichia coli as an N-terminally poly-His-tagged fusion protein and crystallized. Crystals grew after 72 h in 0.2 M MgCl(2), 20% PEG 3350. Data were collected to 3.5 angstrom resolution using synchrotron X-ray radiation at the National Synchrotron Light Laboratory (Campinas, Brazil). The crystals belonged to the trigonal space group P3, with unit-cell parameters a = b = 127.84, c = 275.49 angstrom. Structure determination is under way and will provide relevant information that may lead to the first step in rational drug design for the treatment of Chagas disease.
Resumo:
Background: Transmitted by blood-sucking insects, the unicellular parasite Trypanosoma cruzi is the causative agent of Chagas' disease, a malady manifested in a variety of symptoms from heart disease to digestive and urinary tract dysfunctions. The reasons for such organ preference have been a matter of great interest in the field, particularly because the parasite can invade nearly every cell line and it can be found in most tissues following an infection. Among the molecular factors that contribute to virulence is a large multigene family of proteins known as gp85/trans-sialidase, which participates in cell attachment and invasion. But whether these proteins also contribute to tissue homing had not yet been investigated. Here, a combination of endothelial cell immortalization and phage display techniques has been used to investigate the role of gp85/trans-sialidase in binding to the vasculature. Methods: Bacteriophage expressing an important peptide motif (denominated FLY) common to all gp85/trans-sialidase proteins was used as a surrogate to investigate the interaction of this motif with the endothelium compartment. For that purpose phage particles were incubated with endothelial cells obtained from different organs or injected into mice intravenously and the number of phage particles bound to cells or tissues was determined. Binding of phages to intermediate filament proteins has also been studied. Findings and Conclusions: Our data indicate that FLY interacts with the endothelium in an organ-dependent manner with significantly higher avidity for the heart vasculature. Phage display results also show that FLY interaction with intermediate filament proteins is not limited to cytokeratin 18 (CK18), which may explain the wide variety of cells infected by the parasite. This is the first time that members of the intermediate filaments in general, constituted by a large group of ubiquitously expressed proteins, have been implicated in T. cruzi cell invasion and tissue homing.
Resumo:
Background: The metastatic disease rather than the primary tumor itself is responsible for death in most solid tumors, including breast cancer. The role of matrix metalloproteinases ( MMPs), tissue inhibitors of MMPs (TIMPs) and Reversion-inducing cysteine-rich protein with Kazal motifs ( RECK) in the metastatic process has previously been established. However, in all published studies only a limited number of MMPs/MMP inhibitors was analyzed in a limited number of cell lines. Here, we propose a more comprehensive approach by analyzing the expression levels of several MMPs (MMP-2, MMP-9 and MMP-14) and MMP inhibitors (TIMP-1, TIMP-2 and RECK) in different models ( five human breast cancer cell lines, 72 primary breast tumors and 30 adjacent normal tissues). Methods: We analyzed the expression levels of MMP-2, MMP-9 and MMP-14 and their inhibitors (TIMP-1, TIMP-2 and RECK) by quantitative RT-PCR (qRT-PCR) in five human breast cancer cell lines presenting increased invasiveness and metastatic potential, 72 primary breast tumors and 30 adjacent normal tissues. Moreover, the role of cell-extracellular matrix elements interactions in the regulation of expression and activity of MMPs and their inhibitors was analyzed by culturing these cell lines on plastic or on artificial ECM (Matrigel). Results: The results demonstrated that MMPs mRNA expression levels displayed a positive and statistically significant correlation with the transcriptional expression levels of their inhibitors both in the cell line models and in the tumor tissue samples. Furthermore, the expression of all MMP inhibitors was modulated by cell-Matrigel contact only in highly invasive and metastatic cell lines. The enzyme/inhibitor balance at the transcriptional level significantly favors the enzyme which is more evident in tumor than in adjacent non-tumor tissue samples. Conclusion: Our results suggest that the expression of MMPs and their inhibitors, at least at the transcriptional level, might be regulated by common factors and signaling pathways. Therefore, the multi-factorial analysis of these molecules could provide new and independent prognostic information contributing to the determination of more adequate therapy strategies for each patient.`
Resumo:
It has been demonstrated that laser induced breakdown spectrometry (LIBS) can be used as an alternative method for the determination of macro (P, K. Ca, Mg) and micronutrients (B, Fe, Cu, Mn, Zn) in pellets of plant materials. However, information is required regarding the sample preparation for plant analysis by LIBS. In this work, methods involving cryogenic grinding and planetary ball milling were evaluated for leaves comminution before pellets preparation. The particle sizes were associated to chemical sample properties such as fiber and cellulose contents, as well as to pellets porosity and density. The pellets were ablated at 30 different sites by applying 25 laser pulses per site (Nd:YAG@1064 nm, 5 ns, 10 Hz, 25J cm(-2)). The plasma emission collected by lenses was directed through an optical fiber towards a high resolution echelle spectrometer equipped with an ICCD. Delay time and integration time gate were fixed at 2.0 and 4.5 mu s, respectively. Experiments carried out with pellets of sugarcane, orange tree and soy leaves showed a significant effect of the plant species for choosing the most appropriate grinding conditions. By using ball milling with agate materials, 20 min grinding for orange tree and soy, and 60 min for sugarcane leaves led to particle size distributions generally lower than 75 mu m. Cryogenic grinding yielded similar particle size distributions after 10 min for orange tree, 20 min for soy and 30 min for sugarcane leaves. There was up to 50% emission signal enhancement on LIBS measurements for most elements by improving particle size distribution and consequently the pellet porosity. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
An approach was developed for the preparation of cryogenic ground spiked filter papers with Cu and Zn for use as synthetic calibrating standards for direct solid microanalysis. Solid sampling graphite furnace atomic absorption spectrometry was used to evaluate the microhomogeneity and to check the applicability of the synthetic calibrating standards for the direct determination of Cu and Zn in vegetable certified reference materials. The found concentrations presented no statistical differences at the 95% confidence level. The homogeneity factors ranged from 2.7 to 4.2 for Cu and from 6.4 to 11.5 for Zn.
Resumo:
A procedure for partial digestion of bovine tissue is proposed using polytetrafluoroethylene (PTFE) microvessels inside a baby-bottle sterilizer under microwave radiation for multi-element determination by inductively coupled plasma optical emission spectrometry (ICP OES). Samples were directly weighed in laboratory-made polytetrafluoroethylene vessels. Nitric acid and hydrogen peroxide were added to the uncovered vessels, which were positioned inside the baby-bottle sterilizer, containing 500 mL of water. The hydrogen peroxide volume was fixed at 100 mu L The system was placed in a domestic microwave oven and partial digestion was carried out for the determination of Ca, Cu, Fe. Mg, Mn and Zn by inductively coupled plasma optical emission spectrometry. The single-vessel approach was used in the entire procedure, to minimize contamination in trace analysis. Better recoveries and lower residual carbon content (RCC) levels were obtained under the conditions established through a 2(4-1) fractional factorial design: 650 W microwave power, 7 min digestion time, 50 mu L nitric acid and 50 mg sample mass. The digestion efficiency was ascertained according to the residual carbon content determined by inductively coupled plasma optical emission spectrometry. The accuracy of the proposed procedure was checked against two certified reference materials. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Background: Leptin-deficient mice (Lep(ob)/Lep(ob), also known as ob/ob) are of great importance for studies of obesity, diabetes and other correlated pathologies. Thus, generation of animals carrying the Lep(ob) gene mutation as well as additional genomic modifications has been used to associate genes with metabolic diseases. However, the infertility of Lep(ob)/Lep(ob) mice impairs this kind of breeding experiment. Objective: To propose a new method for production of Lep(ob)/Lep(ob) animals and Lep(ob)/Lep(ob)-derived animal models by restoring the fertility of Lep(ob)/Lep(ob) mice in a stable way through white adipose tissue transplantations. Methods: For this purpose, 1 g of peri-gonadal adipose tissue from lean donors was used in subcutaneous transplantations of Lep(ob)/Lep(ob) animals and a crossing strategy was established to generate Lep(ob)/Lep(ob)-derived mice. Results: The presented method reduced by four times the number of animals used to generate double transgenic models (from about 20 to 5 animals per double mutant produced) and minimized the number of genotyping steps (from 3 to 1 genotyping step, reducing the number of Lep gene genotyping assays from 83 to 6). Conclusion: The application of the adipose transplantation technique drastically improves both the production of Lep(ob)/Lep(ob) animals and the generation of Lep(ob)/Lep(ob)-derived animal models. International Journal of Obesity (2009) 33, 938-944; doi: 10.1038/ijo.2009.95; published online 16 June 2009
Resumo:
A study was designed to determine how the degree programs in Information and library science available in 2000-2005 at the public universities of Madrid fit the tabour market needs of their students. The methodology used was the development of a questionnaire addressed to graduates. Although the number of surveys completed is not high (118), the authors believe that the results obtained permit a series of conclusions that may be extrapolated to the entire cohort.
Resumo:
Obesity-induced endoplasmatic reticulum (ER) stress has been demonstrated to underlie the induction of obesity-induced JNK and NF-kappa B activation inflammatory responses, and generation of peripheral insulin resistance. On the other hand, exercise has been used as a crucial tool in obese and diabetic patients, and may reduce inflammatory pathway stimulation. However, the ability of exercise training to reverse endoplasmatic reticulum stress in adipose and hepatic tissue in obesity has not been investigated in the literature. Here, we demonstrate that exercise training ameliorates ER stress and insulin resistance in DIO-induced rats. Rats were fed with standard rodent chow (3,948 kcal kg(-1)) or high-fat diet (5,358 kcal kg(-1)) for 2 months. After that rats were submitted to swimming training (1 h per day, 5 days for week with 5% overload of the body weight for 8 weeks). Samples from epididymal fat and liver were obtained and western blot analysis was performed. Our results showed that swimming protocol reduces pro-inflammatory molecules (JNK, I kappa B and NF-kappa B) in adipose and hepatic tissues. In addition, exercise leads to reduction in ER stress, by reducing PERK and eIF2 alpha phosphorylation in these tissues. In parallel, an increase in insulin pathway signaling was observed, as confirmed by increases in IR, IRSs and Akt phosphorylation following exercise training in DIO rats. Thus, results suggest that exercise can reduce ER stress, improving insulin resistance in adipose and hepatic tissue.
Resumo:
Molybdenum and tungsten bimetallic oxides were synthetized according to the following methods: Pechini, coprecipitation and solid state reaction (SSR). After the characterization, those solids were carbureted at programmed temperature. The carburation process was monitored by checking the consumption of carburant hydrocarbon and CO produced. The monitoring process permits to avoid or to diminish the formation of pirolytic carbon.
Resumo:
Low Intensity Electrical Stimulation (LIES) has been used for bone repair, but little is known about its effects on bone after menopause. Osteocytes probably play a role in mediating this physical stimulus and they could act as transducers through the release of biochemical signals, such as nitric oxide (NO). The aim of the present study was to investigate the effects of LIES on bone structure and remodeling, NOS expression and osteocyte viability in ovariectomized (OVX) rats. Thirty rats (200-220 g) were divided into 3 groups: SHAM, OVX, and OVX subjected to LIES (OVX + LIES) for 12 weeks. Following the protocol, rats were sacrificed and tibias were collected for histomorphometric analysis and immunohistochemical detection of endothelial NO synthase (eNOS), inducible NOS (iNOS), and osteocyte apoptosis (caspase-3 and TUNEL). OVX rats showed significant (p < 0.05 vs. SHAM) decreased bone volume (10% vs. 25%) and trabecular number (1.7 vs. 3.9), and increased eroded surfaces (4.7% vs. 3.2%) and mineralization surfaces (15.9% vs. 7.7%). In contrast, after LIES, all these parameters were significantly different from OVX but not different from SHAM. eNOS and iNOS were similarly expressed in subperiosteal regions of tibiae cortices of SHAM, not expressed in OVX, and similarly expressed in OVX + LIES when compared to SHAM. In OVX, the percentage of apoptotic osteocytes (24%) was significantly increased when compared to SHAM (11%) and OVX + LIES (8%). Our results suggest that LIES counteracts some effects of OVX on bone tissue preserving bone structure and microarchitecture, iNOS and eNOS expression, and osteocyte viability.