875 resultados para texture segmentation
Resumo:
We present a novel approach to video summarisation that makes use of a Bag-of-visual-Textures (BoT) approach. Two systems are proposed, one based solely on the BoT approach and another which exploits both colour information and BoT features. On 50 short-term videos from the Open Video Project we show that our BoT and fusion systems both achieve state-of-the-art performance, obtaining an average F-measure of 0.83 and 0.86 respectively, a relative improvement of 9% and 13% when compared to the previous state-of-the-art. When applied to a new underwater surveillance dataset containing 33 long-term videos, the proposed system reduces the amount of footage by a factor of 27, with only minor degradation in the information content. This order of magnitude reduction in video data represents significant savings in terms of time and potential labour cost when manually reviewing such footage.
Resumo:
This thesis investigates the fusion of 3D visual information with 2D image cues to provide 3D semantic maps of large-scale environments in which a robot traverses for robotic applications. A major theme of this thesis was to exploit the availability of 3D information acquired from robot sensors to improve upon 2D object classification alone. The proposed methods have been evaluated on several indoor and outdoor datasets collected from mobile robotic platforms including a quadcopter and ground vehicle covering several kilometres of urban roads.
Resumo:
Textured silicon surfaces are widely used in manufacturing of solar cells due to increasing the light absorption probability and also the antireflection properties. However, these Si surfaces have a high density of surface defects that need to be passivated. In this study, the effect of the microscopic surface texture on the plasma surface passivation of solar cells is investigated. The movement of 105 H+ ions in the texture-modified plasma sheath is studied by Monte Carlo numerical simulation. The hydrogen ions are driven by the combined electric field of the plasma sheath and the textured surface. The ion dynamics is simulated, and the relative ion distribution over the textured substrate is presented. This distribution can be used to interpret the quality of the Si dangling bonds saturation and consequently, the direct plasma surface passivation.
Resumo:
This paper describes a novel vision based texture tracking method to guide autonomous vehicles in agricultural fields where the crop rows are challenging to detect. Existing methods require sufficient visual difference between the crop and soil for segmentation, or explicit knowledge of the structure of the crop rows. This method works by extracting and tracking the direction and lateral offset of the dominant parallel texture in a simulated overhead view of the scene and hence abstracts away crop-specific details such as colour, spacing and periodicity. The results demonstrate that the method is able to track crop rows across fields with extremely varied appearance during day and night. We demonstrate this method can autonomously guide a robot along the crop rows.
Resumo:
This paper outlines the approach taken by the Speech, Audio, Image and Video Technologies laboratory, and the Applied Data Mining Research Group (SAIVT-ADMRG) in the 2014 MediaEval Social Event Detection (SED) task. We participated in the event based clustering subtask (subtask 1), and focused on investigating the incorporation of image features as another source of data to aid clustering. In particular, we developed a descriptor based around the use of super-pixel segmentation, that allows a low dimensional feature that incorporates both colour and texture information to be extracted and used within the popular bag-of-visual-words (BoVW) approach.
Resumo:
Transit passenger market segmentation enables transit operators to target different classes of transit users for targeted surveys and various operational and strategic planning improvements. However, the existing market segmentation studies in the literature have been generally done using passenger surveys, which have various limitations. The smart card (SC) data from an automated fare collection system facilitate the understanding of the multiday travel pattern of transit passengers and can be used to segment them into identifiable types of similar behaviors and needs. This paper proposes a comprehensive methodology for passenger segmentation solely using SC data. After reconstructing the travel itineraries from SC transactions, this paper adopts the density-based spatial clustering of application with noise (DBSCAN) algorithm to mine the travel pattern of each SC user. An a priori market segmentation approach then segments transit passengers into four identifiable types. The methodology proposed in this paper assists transit operators to understand their passengers and provides them oriented information and services.
Resumo:
Texture enhancement is an important component of image processing that finds extensive application in science and engineering. The quality of medical images, quantified using the imaging texture, plays a significant role in the routine diagnosis performed by medical practitioners. Most image texture enhancement is performed using classical integral order differential mask operators. Recently, first order fractional differential operators were used to enhance images. Experimentation with these methods led to the conclusion that fractional differential operators not only maintain the low frequency contour features in the smooth areas of the image, but they also nonlinearly enhance edges and textures corresponding to high frequency image components. However, whilst these methods perform well in particular cases, they are not routinely useful across all applications. To this end, we apply the second order Riesz fractional differential operator to improve upon existing approaches of texture enhancement. Compared with the classical integral order differential mask operators and other first order fractional differential operators, we find that our new algorithms provide higher signal to noise values and superior image quality.
Resumo:
The aim of the paper is to give a feasibility study on the material deposition of Nanoscale textured morphology of titanium and titanium oxide layers on titanium and glass substrates. As a recent development in nanoscale deposition, Physical Vapor Deposition (PVD) based DC magnetron sputtering has been the choice for the deposition process. The nanoscale morphology and surface roughness of the samples have been characterized using Atomic Force Microscope (AFM). The surface roughnesses obtained from AFM have been compared using surface profiler. From the results we can say that the roughness values are dependent on the surface roughness of the substrate. The glass substrate was relatively smoother than the titanium plate and hence lower layer roughness was obtained. From AFM a unique nano-pattern of a boomerang shaped titanium oxide layer on glass substrate have been obtained. The boomerang shaped nano-scale pattern was found to be smaller when the layer was deposited at higher sputtering power. This indicated that the morphology of the deposited titanium oxide layer has been influenced by the sputtering power.
Resumo:
This paper describes our participation in the Chinese word segmentation task of CIPS-SIGHAN 2010. We implemented an n-gram mutual information (NGMI) based segmentation algorithm with the mixed-up features from unsupervised, supervised and dictionarybased segmentation methods. This algorithm is also combined with a simple strategy for out-of-vocabulary (OOV) word recognition. The evaluation for both open and closed training shows encouraging results of our system. The results for OOV word recognition in closed training evaluation were however found unsatisfactory.
Resumo:
Market segmentation has received relatively limited attention in social marketing, particularly within the context of changing children’s physical activity behaviour. This is an important area of investigation given growing concern over childhood obesity globally. The present research aims to extend current understanding of the applicability of market segmentation within this context. The results of a two-step cluster analysis on data from 512 respondents of an online survey show three distinct segments of caregivers, each with unique beliefs about their primary school children walking to/from school. The results demonstrate the validity of employing the process of market segmentation within this social context and provide further insights for targeting the identified segments through tailored social marketing programs.
Resumo:
Recent changes in the aviation industry and in the expectations of travellers have begun to alter the way we approach our understanding, and thus the segmentation, of airport passengers. The key to successful segmentation of any population lies in the selection of the criteria on which the partitions are based. Increasingly, the basic criteria used to segment passengers (purpose of trip and frequency of travel) no longer provide adequate insights into the passenger experience. In this paper, we propose a new model for passenger segmentation based on the passenger core value, time. The results are based on qualitative research conducted in-situ at Brisbane International Terminal during 2012-2013. Based on our research, a relationship between time sensitivity and degree of passenger engagement was identified. This relationship was used as the basis for a new passenger segmentation model, namely: Airport Enthusiast (engaged, non time sensitive); Time Filler (non engaged, non time sensitive); Efficiency Lover (non engaged, time sensitive) and Efficient Enthusiast (engaged, time sensitive). The outcomes of this research extend the theoretical knowledge about passenger experience in the terminal environment. These new insights can ultimately be used to optimise the allocation of space for future terminal planning and design.
Resumo:
Objective This study seeks establish whether meaningful subgroups exist within a 14-16 year old adolescent population and if these segments respond differently to the Game On: Know Alcohol (GOKA) intervention, a school-based alcohol social marketing program. Methodology This study is part of a larger cluster randomized controlled evaluation of the Game On: Know Alcohol (GOKA) program implemented in 14 schools in 2013/2014. TwoStep cluster analysis was conducted to segment 2114 high school adolescents (14-16 years old) on the basis of 22 demographic, behavioral and psychographic variables. Program effects on knowledge, attitudes, behavioral intentions, social norms, expectancies and refusal self-efficacy of identified segments was subsequently examined. Results Three segments were identified: (1) Abstainers (2) Bingers (3) Moderate Drinkers. Program effects varied significantly across segments. The strongest positive change effects post participation were observed for the Bingers, while mixed effects were evident for Moderate Drinkers and Abstainers. Conclusions These findings provide preliminary empirical evidence supporting application of social marketing segmentation in alcohol education programs. Development of targeted programs that meet the unique needs of each of the three identified segments is indicated to extend the social marketing footprint in alcohol education.
Resumo:
Robust and automatic non-rigid registration depends on many parameters that have not yet been systematically explored. Here we determined how tissue classification influences non-linear fluid registration of brain MRI. Twin data is ideal for studying this question, as volumetric correlations between corresponding brain regions that are under genetic control should be higher in monozygotic twins (MZ) who share 100% of their genes when compared to dizygotic twins (DZ) who share half their genes on average. When these substructure volumes are quantified using tensor-based morphometry, improved registration can be defined based on which method gives higher MZ twin correlations when compared to DZs, as registration errors tend to deplete these correlations. In a study of 92 subjects, higher effect sizes were found in cumulative distribution functions derived from statistical maps when performing tissue classification before fluid registration, versus fluidly registering the raw images. This gives empirical evidence in favor of pre-segmenting images for tensor-based morphometry.
Resumo:
In this paper we present a robust method to detect handwritten text from unconstrained drawings on normal whiteboards. Unlike printed text on documents, free form handwritten text has no pattern in terms of size, orientation and font and it is often mixed with other drawings such as lines and shapes. Unlike handwritings on paper, handwritings on a normal whiteboard cannot be scanned so the detection has to be based on photos. Our work traces straight edges on photos of the whiteboard and builds graph representation of connected components. We use geometric properties such as edge density, graph density, aspect ratio and neighborhood similarity to differentiate handwritten text from other drawings. The experiment results show that our method achieves satisfactory precision and recall. Furthermore, the method is robust and efficient enough to be deployed in a mobile device. This is an important enabler of business applications that support whiteboard-centric visual meetings in enterprise scenarios. © 2012 IEEE.
Resumo:
Texture evolution in a low cost beta titanium alloy was studied for different modes of rolling and heat treatments. The alloy was cold rolled by unidirectional and multi-step cross rolling. The cold rolled material was either aged directly or recrystallized and then aged. The evolution of texture in alpha and beta phases were studied. The rolling texture of beta phase that is characterized by the gamma fiber is stronger for MSCR than UDR; while the trend is reversed on recrystallization. The mode of rolling affects alpha transformation texture on aging with smaller alpha lath size and stronger alpha texture in UDR than in MSCR. The defect structure in beta phase influences the evolution of a texture on aging. A stronger defect structure in beta phase leads to variant selection with the rolled samples showing fewer variants than the recrystallized samples.