983 resultados para temperature rise


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sediment core logs from six sediment cores in the Labrador Sea show millennial-scale climate variability during the last glacial by recording all Heinrich events and several major Dansgaard-Oeschger cycles. The same millennial-scale climate change is documented for surface-water d18O records of Neogloboquadrina pachyderma (left coiled); hence the surface-water d18O record can be derived from sediment core logging by means of multiple linear regression, providing a paleoclimate proxy record at very high temporal resolution (70 yrs). For the Labrador Sea, sediment core logs contain important information about deep-water current velocities and also reflect the variable input of IRD from different sources as inferred from grain-size analysis, benthic d18O, the relation of density and p-wave velocity, and magnetic susceptibility. For the last glacial, faster deep-water currents which correspond to highs in sediment physical properties, occurred during iceberg discharge and lasted for a several centuries to a few millennia. Those enhanced currents might have contributed to increased production of intermediate waters during times of reduced production of North Atlantic Deep Water. Hudson Strait might have acted as a major supplier of detrital carbonate only during lowered sea level (greater ice extent). During coldest atmospheric temperatures over Greenland, deep-water currents increased during iceberg discharge in the Labrador Sea, then surface water freshened shortly after, while the abrupt atmospheric temperature rise happened after a larger time lag of >=1 kyr. The correlation implies a strong link and common forcing for atmosphere, sea surface, and deep water during the last glacial at millennial time scales but decoupling at orbital time scales.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oxygen isotopic compositions of the tests of planktonic foraminifera from several Deep Sea Drilling Project sites provide a general picture of low-latitude marine temperatures from Maastrichtian time to the present. Bottom temperatures determined from the isotopic compositions of benthonic foraminifera are interpreted as being indicative of high-latitude surface temperatures. Prior to the beginning of middle Miocene time, high- and low-latitude temperatures changed in parallel fashion. Following an apparently small and short-lived drop in temperature near the Tertiary-Cretaceous boundary, temperatures remained warm and relatively constant through Paleocene and early and middle Eocene time; bottom temperatures then were on the order of 12°C. A sharp temperature drop in late Eocene time was followed by a more gradual lowering of temperature, culminating in a late Oligocene high-latitude temperature minimum of about 4°C. A temperature rise through early Miocene time was followed in middle Miocene time by a sudden divergence of high- and low-latitude temperatures: high-latitude temperatures dropped dramatically, perhaps corresponding to the onset of major glaciation in Antarctica, but low-latitude temperatures remained constant or perhaps increased. This uncoupling of high-and low-latitude temperatures is postulated to be related to the establishment of a circum-Antarctic circulation similar to that of today. A further drop in high-latitude temperatures in late Pliocene time probably signaled the onset of a major increase in polar glaciation, including extensive sea-ice formation. Early Miocene, small-amplitude (1 per mil) sympathetic fluctuations in isotopic compositions of planktonic and benthonic foraminifera have been identified. These have a period of several hundred thousand years. Superimposed upon these are much more rapid and smaller fluctuations (0.2 to 0.5 per mil) with a period of about 80000 to 90000 yr. This is similar to the period observed for Pleistocene isotopic temperature fluctuations. In low latitudes, much smaller vertical temperature gradients seem to have existed during Maastrichtian and Paleogene time than exist at present. The absence of a sharply defined thermocline during early Tertiary time is also suggested.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ODP Site 1078 situated under the coast of Angola provides the first record of the vegetation history for Angola. The upper 11 m of the core covers the past 30 thousand years, which has been analysed palynologically in decadal to centennial resolution. Alkenone sea surface temperature estimates were analysed in centennial resolution. We studied sea surface temperatures and vegetation development during full glacial, deglacial, and interglacial conditions. During the glacial the vegetation in Angola was very open consisting of grass and heath lands, deserts and semi-deserts, which suggests a cool and dry climate. A change to warmer and more humid conditions is indicated by forest expansion starting in step with the earliest temperature rise in Antarctica, 22 thousand years ago. We infer that around the period of Heinrich Event 1, a northward excursion of the Angola Benguela Front and the Congo Air Boundary resulted in cool sea surface temperatures but rain forest remained present in the northern lowlands of Angola. Rain forest and dry forest area increase 15 thousand years ago. During the Holocene, dry forests and Miombo woodlands expanded. Also in Angola globally recognised climate changes at 8 thousand and 4 thousand years ago had an impact on the vegetation. During the past 2 thousand years, savannah vegetation became dominant.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study reconstructs middle and late Holocene vegetation and climate dynamics in the Oshima Peninsula, SW Hokkaido, using the published method of biome reconstruction and modern analogue technique applied to the Yakumo pollen record (42°17'03''N, 140°15'34''E) spanning the last 5500 years. Two previously published matrices assigning Japanese plant/pollen taxa to the major vegetation types (biomes) are tested using a newly compiled dataset of 78 surface pollen spectra from Hokkaido. With both matrices showing strengths and weaknesses in reconstructing cool mixed and temperate deciduous forests of Hokkaido, the results suggest the necessity to consider the whole list of identified terrestrial pollen taxa for generating robust vegetation reconstructions for northern Japan. Applied to the fossil pollen data, both biome-reconstruction approaches demonstrate consistently that oak-dominated cool mixed forest spread in the study region between 5.5 and 3.6 cal ka BP and was subsequently replaced by beech-dominated temperate deciduous forest. The pollen-based climate reconstruction suggests this change in the vegetation composition was caused by a shift from cooler and drier than present climate to warmer and wetter, similar to modern conditions about 3.6 cal ka BP. Comparing the pollen-based reconstruction results with the published marine records from the NW Pacific, the reconstructed vegetation and climate dynamics can be satisfactorily explained by the greater role played by the warm Tsushima Current in the Sea of Japan and in the Tsugaru Strait during the middle and late Holocene. An increase in sea surface temperatures west and south of the study site would favour air temperature rise and moisture uptake and cause an increase in precipitation and snow accumulation in the western part of Hokkaido during the late Holocene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sannai-Maruyama is one of the most famous and best-researched mid-Holocene (mid-Jomon) archaeological sites in Japan, because of a large community of people for a long period. Archaeological studies have shown that the Jomon people inhabited the Sannai-Maruyama site from 5.9-4.2 +/- 0.1 cal. kyr B.P. However, a continuous record of the terrestrial and marine environments around the site has not been available. Core KT05-7 PC-02, was recovered from Mutsu Bay, only 20 km from the site, for the reconstruction of high-resolution time series of environmental records, including sea surface temperature (SST). C37 alkenone SSTs showed clear fluctuations, with four periods of high (8.4-7.9, 7.0-5.9, 5.1-4.1, and 2.3-1.4 cal. kyr B.P.) and four of low (-8.4, 7.9-7.0, 5.9-5.1, and 4.1-2.3 cal. kyr B.P.) SST. Thus, each SST cycle lasted 1.0-2.0 kyr, and the amplitude of fluctuation was about 1.5-2.0 °C. Total organic carbon (TOC) and C37 alkenone contents, and the TOC/total nitrogen ratio indicate that marine biogenic production was low before 7.0 cal. kyr B.P., but was clearly increased between 5.9 and 4.0 cal. kyr B.P., because of stronger vertical mixing. During the period when the community at the site prospered (between 5.9 and 4.2 +/- 0.1 cal. kyr B.P.), the terrestrial climate was relatively warm. The high relative abundance of pollen of both Castanea and Quercus subgen. Cyclobalanopsis supports the interpretation that the local climate was optimal for human habitation. Between 5.9 and 5.1 cal. kyr B.P., in spite of warm terrestrial climates, the C37 alkenone SST was low; this apparent discrepancy may be attributed to the water column structure in the Tsugaru Strait, which differed from the modern condition. The evidence suggests that at about 5.9 cal. kyr B.P, high productivity of marine resources such as fish and shellfish and a warm terrestrial climate led to the establishment of a human community at the Sannai-Maruyama site. Then, at about 4.1 +/- 0.1 cal. kyr B.P., abrupt marine and terrestrial cooling, indicated by a decrease of about 2 °C in the C37 alkenone SST and an increase in pollen of taxa of cooler climates, led to a reduced terrestrial food supply, causing the people to abandon the site. The timing of the abandonment is consistent with the timing (around 4.0-4.3 cal. kyr B.P.) of the decline of civilizations in north Mesopotamia and along the Yangtze River. These findings suggest that a temperature rise of ~2 °C in this century as a result of global warming could have a great impact on the human community and especially on agriculture, despite the advances of contemporary society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A mesocosm experiment was conducted to quantify the effects of reduced pH and elevated temperature on an intact marine invertebrate community. Standardised faunal communities, collected from the extreme low intertidal zone using artificial substrate units, were exposed to one of eight nominal treatments (four pH levels: 8.0, 7.7, 7.3 and 6.7, crossed with two temperature levels: 12 and 16°C). After 60 days exposure communities showed significant changes in structure and lower diversity in response to reduced pH. The response to temperature was more complex. At higher pH levels (8.0 and 7.7) elevated temperature treatments contained higher species abundances and diversity than the lower temperature treatments. In contrast, at lower pH levels (7.3 and 6.7), elevated temperature treatments had lower species abundances and diversity than lower temperature treatments. The species losses responsible for these changes in community structure and diversity were not randomly distributed across the different phyla examined. Molluscs showed the greatest reduction in abundance and diversity in response to low pH and elevated temperature, whilst annelid abundance and diversity was mostly unaffected by low pH and was higher at the elevated temperature. The arthropod response was between these two extremes with moderately reduced abundance and diversity at low pH and elevated temperature. Nematode abundance increased in response to low pH and elevated temperature, probably due to the reduction of ecological constraints, such as predation and competition, caused by a decrease in macrofaunal abundance. This community-based mesocosm study supports previous suggestions, based on observations of direct physiological impacts, that ocean acidification induced changes in marine biodiversity will be driven by differential vulnerability within and between different taxonomical groups. This study also illustrates the importance of considering indirect effects that occur within multispecies assemblages when attempting to predict the consequences of ocean acidification and global warming on marine communities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A reliable data set of Arctic sea ice concentration based on satellite observations exists since 1972. Over this time period of 36 years western arctic temperatures have increased; the temperature rise varies significantly from one season to another and over multi-year time scales. In contrast to most of Alaska, however, on the North Slope the warming continued after 1976, when a circulation change occurred, as expressed in the PDO index. The mean temperature increase for Barrow over the 36-year period was 2.9°C, a very substantial change. Wind speeds increased by 18% over this time period, however, the increase were non-linear and showed a peak in the early 1990s. The sea ice extent of the Arctic Ocean has decreased strongly in recent years, and in September 2007 a new record in the amount of open water was recorded in the Western Arctic. We observed for the Southern Beaufort Sea a fairly steady increase in the mean annual amount of open water from 14% in 1972 to 39% in 2007, as deduced from the best linear fit. In late summer the decrease is much larger, and September has, on average, the least ice concentration (22%), followed by August (35%) and October (54%). The correlation coefficient between mean annual values of temperature and sea ice concentration was 0.84. On a monthly basis, the best correlation coefficient was found in October with 0.88. However, the relationship between winter temperatures and the sea ice break-up in summer was weak. While the temperature correlated well with the CO2 concentration (r=0.86), the correlation coefficient between CO2 and sea ice was lower (r=-0.68). After comparing the ice concentration with 17 circulation indices, the best relation was found with the Pacific Circulation Index (r=-0.59).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High-resolution records of alkenone-derived sea surface temperatures and elemental Ti/Ca ratios from a sediment core retrieved off northeastern Brazil (4° S) reveal short-term climate variability throughout the past 63,000 a. Large pulses of terrigenous sediment discharge, caused by increased precipitation in the Brazilian hinterland, coincide with Heinrich events and the Younger Dryas period. Terrigenous input maxima related to Heinrich events H6-H2 are characterized by rapid cooling of surface water ranging between 0.5 and 2° C. This signature is consistent with a climate model experiment where a reduction of the Atlantic meridional overturning circulation (AMOC) and related North Atlantic cooling causes intensification of NE trade winds and a southward movement of the Intertropical Convergence Zone, resulting in enhanced precipitation off northeastern Brazil. During deglaciation the surface temperature evolution at the core site predominantly followed the Antarctic warming trend, including a cooling, prior to the Younger Dryas period. An abrupt temperature rise preceding the onset of the Bølling/Allerød transition agrees with model experiments suggesting a Southern Hemisphere origin for the abrupt resumption of the AMOC during deglaciation caused by Southern Ocean warming and associated with northward flow anomalies of the South Atlantic western boundary current.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study investigated the effects of seawater pH (i.e., 8.10, 7.85 and 7.60) and temperature (16 and 19 °C) on (a) the abiotic conditions in the fluid surrounding the embryo (viz. the perivitelline fluid), (b) growth, development and (c) cuttlebone calcification of embryonic and juvenile stages of the cephalopod Sepia officinalis. Egg swelling increased in response to acidification or warming, leading to an increase in egg surface while the interactive effects suggested a limited plasticity of the swelling modulation. Embryos experienced elevated pCO2 conditions in the perivitelline fluid (>3-fold higher pCO2 than that of ambient seawater), rendering the medium under-saturated even under ambient conditions. The growth of both embryos and juveniles was unaffected by pH, whereas 45Ca incorporation in cuttlebone increased significantly with decreasing pH at both temperatures. This phenomenon of hypercalcification is limited to only a number of animals but does not guarantee functional performance and calls for better mechanistic understanding of calcification processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Carbon dioxide concentrations in the surface ocean are increasing owing to rising CO2 concentrations in the atmosphere. Higher CO2 levels are predicted to affect essential physiological processes of many aquatic organisms, leading to widespread impacts on marine diversity and ecosystem function, especially when combined with the effects of global warming. Yet the ability for marine species to adjust to increasing CO2 levels over many generations is an unresolved issue. Here we show that ocean conditions projected for the end of the century (approximately 1,000 µatm CO2 and a temperature rise of 1.5-3.0 °C) cause an increase in metabolic rate and decreases in length, weight, condition and survival of juvenile fish. However, these effects are absent or reversed when parents also experience high CO2 concentrations. Our results show that non-genetic parental effects can dramatically alter the response of marine organisms to increasing CO2 and demonstrate that some species have more capacity to acclimate to ocean acidification than previously thought.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Climate change with increasing temperature and ocean acidification (OA) poses risks for marine ecosystems. According to Pörtner and Farrell [1], synergistic effects of elevated temperature and CO2-induced OA on energy metabolism will narrow the thermal tolerance window of marine ectothermal animals. To test this hypothesis, we investigated the effect of an acute temperature rise on energy metabolism of the oyster, Crassostrea gigas chronically exposed to elevated CO2 levels (partial pressure of CO2 in the seawater ~0.15 kPa, seawater pH ~ 7.7). Within one month of incubation at elevated PCO2 and 15 °C hemolymph pH fell (pHe = 7.1 ± 0.2 (CO2-group) vs. 7.6 ± 0.1 (control)) and PeCO2 values in hemolymph increased (0.5 ± 0.2 kPa (CO2-group) vs. 0.2 ± 0.04 kPa (control)). Slightly but significantly elevated bicarbonate concentrations in the hemolymph of CO2-incubated oysters ([HCO-3]e = 1.8 ± 0.3 mM (CO2-group) vs. 1.3 ± 0.1 mM (control)) indicate only minimal regulation of extracellular acid-base status. At the acclimation temperature of 15 °C the OA-induced decrease in pHe did not lead to metabolic depression in oysters as standard metabolism rates (SMR) of CO2-exposed oysters were similar to controls. Upon acute warming SMR rose in both groups, but displayed a stronger increase in the CO2-incubated group. Investigation in isolated gill cells revealed a similar temperature-dependence of respiration between groups. Furthermore, the fraction of cellular energy demand for ion regulation via Na+/K+-ATPase was not affected by chronic hypercapnia or temperature. Metabolic profiling using 1H-NMR spectroscopy revealed substantial changes in some tissues following OA exposure at 15 °C. In mantle tissue alanine and ATP levels decreased significantly whereas an increase in succinate levels was observed in gill tissue. These findings suggest shifts in metabolic pathways following OA-exposure. Our study confirms that OA affects energy metabolism in oysters and suggests that climate change may affect populations of sessile coastal invertebrates such as mollusks

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ice shelves strongly interact with coastal Antarctic sea ice and the associated ecosystem by creating conditions favourable to the formation of a sub-ice platelet layer. The close investigation of this phenomenon and its seasonal evolution remain a challenge due to logistical constraints and a lack of suitable methodology. In this study, we characterize the seasonal cycle of Antarctic fast ice adjacent to the Ekström Ice Shelf in the eastern Weddell Sea. We used a thermistor chain with the additional ability to record the temperature response induced by cyclic heating of resistors embedded in the chain. Vertical sea-ice temperature and heating profiles obtained daily between November 2012 and February 2014 were analyzed to determine sea-ice and snow evolution, and to calculate the basal energy budget. The residual heat flux translated into an ice-volume fraction in the platelet layer of 0.18 ± 0.09, which we reproduced by a independent model simulation and agrees with earlier results. Manual drillings revealed an average annual platelet-layer thickness increase of at least 4m, and an annual maximum thickness of 10m beneath second-year sea ice. The oceanic contribution dominated the total sea-ice production during the study, effectively accounting for up to 70% of second-year sea-ice growth. In summer, an oceanic heat flux of 21 W/m**2 led to a partial thinning of the platelet layer. Our results further show that the active heating method, in contrast to the acoustic sounding approach, is well suited to derive the fast-ice mass balance in regions influenced by ocean/ice-shelf interaction, as it allows sub-diurnal monitoring of the platelet-layer thickness.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The goal of the European laser fusion project, is to build an engineering facility for repetitive laser operation (HiPER 4a) and later a fusion reactor (HiPER 4b). A key aspect for laser fusion energy is the final optics. At the moment, it is based on silica transmission lenses located 8 m away from the chamber center. Lens lifetime depends on the irradiation conditions. We have used a 48 MJ shock ignition target for calculations. We have studied the thermo-mechanical effects of ions and X-rays on the lenses. Ions lead to lens melting and must therefore be mitigated. On the other hand, X-rays (~1% of the energy) does not produce either a significant temperature rise or detrimental stresses. Finally, we calculated the neutron flux and gamma dose rate on the lenses. Next, based on a simple model we studied the formation of color centers in the sample, which lead to optical absorption. Calculations show that simultaneous neutron and gamma irradiation does not significantly increase the optical absorption during the expected lifetime of the HiPER 4a facility. Under severe conditions (HiPER 4b), operation above 800 K or lens refreshing by thermal annealing treatments seem to assure adequate behavior.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An experimental and numerical study of ballistic impacts on steel plates at various temperatures (700ºC, 400ºC and room temperature) has been carried out. The motivation for this work is the blade‐off event that may occur inside a jet engine turbine. However, as a first attempt to understand this complex loading process, a somewhat simpler approach is carried out in the present work. The material used in this study is the FV535 martensitic stainless steel, which is one of the most commonly used materials for turbine casings. Based on material test data, a Modified Johnson‐Cook (MJC) model was calibrated for numerical simulations using the LS‐DYNA explicit finite element code (see Figure 1). To check the mesh size sensitivity, 2D axisymmetric finite element models with three different mesh sizes and configurations were used for the various temperatures. Two fixed meshes with 64 and 128 elements over the 2mm thick plate and one mesh with 32 elements over the thickness with adaptive remeshing were used in the simulations. The formation of adiabatic shear bands in the perforation process has been found critical in order to achieve good results. Adiabatic shear bands are formed by the temperature rise due to the accumulation of plastic strain during impact (see Figure 2). The influence of the thermal softening in the plastic model has hence been analyzed for the room temperature impact tests, where the temperature gradient is highest