359 resultados para talc


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hole 504B, drilled into the 5.9 Ma crust of the southern flank of the Costa Rica Rift, tapped a hydrothermal system in its conductive stage. Three alteration zones were encountered along the 561.5 meters of basement drilled. The upper alteration zone, 274.5 to 584.5 meters below the seafloor (BSF), is characterized by the presence of color zonation in which red halos are located between dark gray inner rock portions and dark gray outer bands. The red halos are characterized by an abundance of iddingsite, and they have higher K2O contents and Fe3+/FeT ratios, but lower SiO2 contents, than the adjacent dark gray inner zones. The dark gray outer bands are characterized by the presence of celadonite-nontronite. Saponite is omnipresent in these three alteration bands. Phillipsite is the only zeolite that occurs in the upper alteration zone. The upper alteration zone is interpreted as being the result of low-temperature alteration, with large amounts of cold oxygenated seawater percolating through the upper ocean crust. In the upper alteration zone, the formation of red halos was both preceded and followed by formation of dark gray outer bands. Then followed formation of dark gray cores. The lower alteration zone (584.5-835.5 m BSF) is characterized by the absence of color zonation, the downward-increasing abundance of pyrite and saponite, and the presence of quartz, talc, and calcite. The chemical changes (downhole MgO enrichment and concomitant CaO depletion) observed in the basalts of the lower alteration zone are thought to result from reactions of oceanic basalts with evolved seawater (i.e., solutions derived from seawater that has already reacted with ocean crust), which is thus depleted in oxygen, potassium, and radiogenic strontium. This alteration process, which was responsible for saponite formation in both the upper and lower alteration zones, was rock dominated, and it took place under suboxic to anoxic conditions during a second stage of alteration. Reaction temperatures could have progressively increased with depth. There is also a zeolitic zone that essentially coincides with the lower part of the upper alteration zone (between 528.5 and 563 m BSF). The host rock adjacent to veins of zeolite exhibits a greenish discoloration due to the intensive replacement of the igneous minerals. The replacement minerals result in significant increases in the bulk rock K2O, MgO, CaO, CO2, and H2O+ contents. The solutions circulating along the newly opened fissures had high Ca activity, and minerals probably precipitated in these fissures at 60°C or 110°C. These hydrothermal solutions circulated later than those responsible for the formation of the minerals that characterize the upper and lower alteration zones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In three veins from the lower part of Deep Sea Drilling Project Hole 504B, 298 meters below the top of basement, primary augite is replaced by aegirine-augite. This transformation occurs only in subophitic basalts, at the contact with veins which always include a dark-olive, Mg-rich clay mineral. Talc occurs in one of these veins; it can be regarded either as a vein constituent or as a product of augite alteration. Melanite (Ca,Fe,Ti-rich garnet) appears in only one of these three veins, where a Ca-carbonate is associated with a Mg-rich clay mineral. The occurrence of melanite in Hole 504B could be due to the conjunction of particular conditions: (1) basalt with a subophitic texture, (2) presence of hydrothermal fluids carrying Ca, Fe, Si, Ti, Al, Mg, and Na, (3) rather high temperatures. Possibly the melanite and aegirine-augite formed by deuteric alteration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Secondary minerals in basalts from Holes 495 and 500 include smectite and chlorite, both of which have partially replaced the basalt groundmass. In addition to these two minerals, amphibole, laumontite, albite, and a corrensitelike mineral are present in Holes 499B and 499C. Smectite, chlorite, talc, calcite, phillipsite, mica, and mixed-layer chlorite-montmorillonite also fill veins in the basalts of Hole 495. The secondary mineral assemblages from Site 499 are characteristic of the initial stage of greenschist facies metamorphism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abyssal peridotite from the 15°20'N area of the Mid-Atlantic Ridge show complex geochemical variations among the different sites drilled during ODP Leg 209. Major element compositions indicate variable degrees of melt depletion and refertilization as well as local hydrothermal metasomatism. Strongest evidence for melt-rock interactions are correlated Light Rare Earth Element (LREE) and High Field Strength Element (HFSE) additions at Sites 1270 and 1271. In contrast, hydrothermal alteration at Sites 1274, 1272, and 1268 causes LREE mobility associated with minor HFSE variability, reflecting the low solubility of HFSE in aqueous solutions. Site 1274 contains the least-altered, highly refractory, peridotite with strong depletion in LREE and shows a gradual increase in the intensity of isochemical serpentinization; except for the addition of H2O which causes a mass gain of up to 20 g/100 g. The formation of magnetite is reflected in decreasing Fe(2+)/Fe(3+) ratios. This style of alteration is referred to as rock-dominated serpentinization. In contrast, fluid-dominated serpentinization at Site 1268 is characterized by gains in sulfur and development of U-shaped REE pattern with strong positive Eu anomalies which are also characteristic for hot (350 to 400°C) vent-type fluids discharging from black smoker fields. Serpentinites at Site 1268 were overprinted by talc alteration under static conditions due to interaction with high a_SiO2 fluids causing the development of smooth, LREE enriched patterns with pronounced negative Eu anomalies. These results show that hydrothermal fluid-peridotite and fluid-serpentinite interaction processes are an important factor regarding the budget of exchange processes between the lithosphere and the hydrosphere in slow spreading environments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

How the micro-scale fabric of clay-rich mudstone evolves during consolidation in early burial is critical to how they are interpreted in the deeper portions of sedimentary basins. Core samples from the Integrated Ocean Drilling Program Expedition 308, Ursa Basin, Gulf of Mexico, covering seafloor to 600 meters below sea floor (mbsf) are ideal for studying the micro-scale fabric of mudstones. Mudstones of consistent composition and grain size decrease in porosity from 80% at the seafloor to 37% at 600 mbsf. Argon-ion milling produces flat surfaces to image this pore evolution over a vertical effective stress range of 0.25 (71 mbsf) to 4.05 MPa (597 mbsf). With increasing burial, pores become elongated, mean pore size decreases, and there is preferential loss of the largest pores. There is a small increase in clay mineral preferred orientation as recorded by high resolution X-ray goniometry with burial.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Basalt samples recovered during DSDP Legs 68, 69, and 70 from a 550-meter-thick section in two holes near the Costa Rica Rift (Holes 501 and 504B) were found to contain the following secondary minerals: trioctahedral and dioctahedral smectite, chlorite, mixed-layer clays, talc, hematite, pyrite, foujasite, phillipsite, analcime, natrolite, thomsonite, gyrolite, aragonite, calcite, anhydrite, chalcocite, Fe-hydrosilicate, okenite, apophyllite, actinolite, cristobalite, quartz, and magnesite. A less positive identification of bismutite was made. A mineral rich in Mn and minerals with strong reflections at 12.9 Å and 3.20 Å remain unidentified. Trioctahedral smectite replaces glass and olivine in the basalt groundmass. The other secondary minerals occur in veins. The distribution of the secondary minerals in the basalt section shows both hydrothermal and oxidizing-nonoxidizing zonation. Most of the secondary minerals formed under alkaline, nonoxidizing conditions at temperatures up to 120° C. An acidic regime probably existed in the lowest portion of basalt. Oxidative diagenesis followed nonoxidative diagenesis in the upper part of the section. Oxidative diagenesis is characterized by the absence of celadonite, rare occurrences of dioctahedral smectite, and widespread hematite and phillipsite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aqueous dihydrogen (H2,aq) is produced in copious amounts when seawater interacts with peridotite and H2O oxidizes ferrous iron in olivine to ferric iron in secondary magnetite and serpentine. Poorly understood in this process is the partitioning of iron and its oxidation state in serpentine, although both impose an important control on dihydrogen production. We present results of detailed petrographic, mineral chemical, magnetic and Mößbauer analyses of partially to fully serpentinized peridotites from the Ocean Drilling Program (ODP) Leg 209, Mid-Atlantic Ridge (MAR) 15°N area. These results are used to constrain the fate of iron during serpentinization and are compared with phase equilibria considerations and peridotite-seawater reaction path models. In samples from Hole 1274A, mesh-rims reveal a distinct in-to-out zoning from brucite at the interface with primary olivine, followed by a zone of serpentine + brucite ± magnetite and finally serpentine + magnetite in the outermost mesh-rim. The compositions of coexisting serpentine (Mg# 95) and brucite (Mg# 80) vary little throughout the core. About 30-50% of the iron in serpentine/brucite mesh-rims is trivalent, irrespective of subbasement depth and protolith (harzburgite versus dunite). Model calculations suggest that both partitioning and oxidation state of iron are very sensitive to temperature and water-to-rock ratio during serpentinization. At temperatures above 330 °C the dissolution of olivine and coeval formation of serpentine, magnetite and dihydrogen depends on the availability of an external silica source. At these temperatures the extent of olivine serpentinization is insufficient to produce much hydrogen, hence conditions are not reducing enough to form awaruite. At T < 330 °C, hydrogen generation is facilitated by the formation of brucite, as dissolution of olivine to form serpentine, magnetite and brucite requires no addition of silica. The model calculations suggest that the iron distribution observed in serpentine and brucite is consistent with formation temperatures ranging from <150 to 250 °C and bulk water-to-rock ratios between 0.1 and 5. These conditions coincide with peak hydrogen fugacities during serpentinization and are conducive to awaruite formation during main stage serpentinization. The development of the common brucite rims around olivine is either due to an arrested reaction olivine -> brucite -> serpentine + brucite, or reflects metastable olivine-brucite equilibria developing in the strong gradient in silica activity between orthopyroxene (talc-serpentine) and olivine (serpentine-brucite).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sediment cores from nine sites along a profile on the Antarctic continental margin off Kapp Norvegia were analysed sedimentologicaly. The carbonate and organic carbon content, grain size distribution, composition of the coarse fraction and clay minerals were determined. d18O- and d13C-isotope ratios were also measured. The distribution of ice rafted debris was determined by a new method. Sedimentation-rates were obtained from 230Th- and 14C-analyses. A segregation into seven different sediment facies was made possible by different sedimentological parameters, which can be attributed to different sedimentation environments and conditions. Thr profile can be divided morphologicaly into shelf, upper continental slope, slope terrace and lower continental slope. The paratill facies is deposited on the shelf during an interglacial phase and consists mainly of ice rafted sediments. A portion of the fine fraction is being carried away by the antarctic coastel current. The sedimentation rate lies between 0 and 3 cm/1000 a. The coarse grained deposits of the upper, relatively steep continental slope, were specified as a rest sediment. Current and gravity sediment transport are responsible for the intensive sorting of ice rafted material coming from the shelf. The fine sediment is carried away by currents while sand and silt are deposited as small turbidites on the slope terrace. The morainic facies only appears at the base of the upper continental slope and defines ice advances, beyond the shelf margin. The facies mainly consists of transported shelf sediments. The interglacial facies, deposited during the interglacial phases on the continental slope, are characterized by high proportions of ice raft, coarse mean grain size, low content of montmorillonite and a carbonate content, which mainly originates from planktonic foraminifera (N. pachyderma). At the central part of the slope the sedimentation rate is at its lowest (2 cm/1000 a) and increases to 3-4 cm/1000 a towards the sea, due to high production of biogenic components and towards the continent due to an increasing input of terrigenous material. Sedimentary conditions during glacial times are depicted in the glacial facies by a low content of ice rafted debris, a lower mean grain size and a high content of montmorillonite. Biogeneous components are absent. The sedimentation rate is generally about 1 cm/1000a. A transition facies is deposited during the transition from glacial to interglacial conditions. Typical for this facies, with a terrigenous composition similar to the interglacial facies, is a high content of radiolaria. The reason for the change of plankton from a siliceous to a carbonacous fauna may have been the changing hydrography caused by the sea ice. The surge facies is deposited at the continental margin under the ice shelf and is a sediment exclusively delivered by currents. With the aid of this facies it was, for the first time possible to prove the existence of Antarctic ice surges, an aspect wh ich has been discussed for the past 20 years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We discuss the provenance of minerals detected by X-ray-diffraction analyses of sediments of Sites 504 and 505 of Deep Sea Drilling Project Leg 69. These are X-ray-amorphous material, opal-CT, calcite, quartz, feldspar, apatite, smectite, illite, kaolinite, magnetite, maghemite, pyrite, marcasite, barite, sepiolite, and clinoptilolite. Authigenic marcasite and clinoptilolite together with opal-CT are restricted to Site 504, indicating the special diagenetic conditions related to relatively high sediment temperatures at this site. Marcasite formation is likely dependent on the relatively low pH values of <7.1 found in interstitial waters of Site 504 sediments below 50 meters sub-bottom. Clinoptilolite evidently was formed by diagenetic alteration of rhyolitic volcanic glass or smectite plus biogenic silica within the chalk-limestone-chert sequence of Site 504, where opal-CT also reflects a high degree of silica dissolution and reprecipitation. This was a consequence of high temperatures (50-55 °C) at the base of the sediment column.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mineral and chemical alterations of basalts were studied in the upper part of the ocean crust using data of deep-sea drilling from D/S Glomar Challenger in the main structures of the Pacific floor. Extraction of majority of chemical elements (including heavy metals) from basalts results mainly from their interaction with heated sea water. As a result mineralized hydrothermal solutions are formed. On entering the ocean they influence greatly on ocean sedimentation and ore formation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Petrography and isotope geochemical characteristics of H, O, S, Sr, and Nd have been described for basalts recovered from Hole 504B during Leg 111 of the Ocean Drilling Program. The petrographic and chemical features of the recovered basalts are similar to those obtained previously (DSDP Legs 69, 70, and 83); they can be divided into phyric (plagioclase-rich) and aphyric (Plagioclase- and clinopyroxene-rich) basalts and show low abundances of TiO2, Na2O, K2O, and Sr. This indicates that the basalts belong to Group D, comprising the majority of the upper section of the Hole 504B. The diopside-rich nature of the clinopyroxene phenocrysts and Ca-rich nature of the Plagioclase phenocrysts are also consistent with the preceding statement. The Sr and Nd isotope systematics (average 87Sr/86Sr = 0.70267 ± 0.00007 and average 143Nd/144Nd = 0.513157 ± 0.000041) indicate that the magma sources are isotopically heterogeneous, although the analyzed samples represent only the lowermost 200-m section of Hole 504B. The rocks were subjected to moderate hydrothermal alteration throughout the section recovered during Leg 111. Alteration is limited to interstices, microfractures, and grain boundaries of the primary minerals, forming chlorite, actinolite, talc, smectite, quartz, sphene, and pyrite. In harmony with the moderate alteration, the following alteration-sensitive parameters show rather limited ranges of variation: H2O = 1.1 ±0.2 wt%, dD = - 38 per mil ± 4 per mil, d180 = 5.4 per mil ± 0.3 per mil, total S = 562 ± 181 ppm, and d34S = 0.8 per mil ± 0.3 per mil. Based on these data, it was estimated that the hydrothermal fluids had dD and d180 values only slightly higher than those of seawater, the water/rock ratios were as low as 0.02-0.2, and the temperature of alteration was 300°-400°C. Sulfur exists predominantly as pyrite and in minor quantities as chalcopyrite. No primary monosulfide was detected. This and the d34S values of pyrite (d34S = 0.8 per mil) suggest that primary pyrrhotite was almost completely oxidized to pyrite by reaction with hydrothermal fluids containing very little sulfate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present results of a detailed mineralogical and geochemical study of the progressive hydrothermal alteration of clastic sediments recovered at ODP Site 858 in an area of active hydrothermal venting at the sedimented, axial rift valley of Middle Valley (northern Juan de Fuca Ridge). These results allow a characterization of newly formed phyllosilicates and provide constraints on the mechanisms of clay formation and controls of mineral reactions on the chemical and isotopic composition of hydrothermal fluids. Hydrothermal alteration at Site 858 is characterized by a progressive change in phyllosilicate assemblages with depth. In the immediate vent area, at Hole 858B, detrital layers are intercalated with pure hydrothermal precipitates at the top of the section, with a predominance of hydrothermal phases at depth. Sequentially downhole in Hole 858B, the clay fraction of the pure hydrothermal layers changes from smectite to corrensite to swelling chlorite and finally to chlorite. In three pure hydrothermal layers in the deepest part of Hole 858B, the clay minerals coexist with neoformed quartz. Neoformed and detrital components are clearly distinguished on the basis of morphology, as seen by SEM and TEM, and by their chemical and stable isotope compositions. Corrensite is characterized by a 24 Å stacking sequence and high Si- and Mg-contents, with Fe/(Fe+Mg) ratio of = 0.08. We propose that corrensite is a unique, possibly metastable, mineralogical phase and was precipitated directly from seawater-dominated hydrothermal fluids. Hydrothermal chlorite in Hole 858B has a stacking sequence of 14 Å with Fe/(Fe+Mg) ratios of ? 0.35. The chemistry and structure of swelling chlorite suggest that it is a corrensiteychlorite mixed-layer phase. The mineralogical zonation in Hole 858B is accompanied by a systematic decrease in d18O, reflecting both the high thermal gradients that prevail at Site 858 and extensive sediment-fluid interaction. Precipitation of the Mg-phyllosilicates in the vent region directly controls the chemical and isotopic compositions of the pore fluids. This is particularly evident by decreases in Mg and enrichments in deuterium and salinity in the pore fluids at depths at which corrensite and chlorite are formed. Structural formulae calculated from TEM-EDX analyses were used to construct clay-H2O oxygen isotope fractionation curves based on oxygen bond models. Our results suggest isotopic disequilibrium conditions for corrensite-quartz and swelling chlorite-quartz precipitation, but yield an equilibrium temperature of 300° C ± 30° for chlorite-quartz at 32 m below the surface. This estimate is consistent with independent estimates and indicates steep thermal gradients of 10-11°/m in the vent region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several meters of unconsolidated hydrothermal sediment were recovered from the Snake Pit hydrothermal field during ODP Leg 106. Polymetallic sulfides comprise most of the sediment with minor fragments of massive sulfide, organic debris, clay minerals, and fresh glass shards. Trace element and Sr-isotope contents of hydrothermal clays and sulfides from Holes 649B and 649G indicate that these minerals precipitated from a mixed hydrothermal fluid-seawater solution. Evaluation of the REE mineral data and the Snake Pit hydrothermal fluids shows that the REE distribution coefficients between the hydrothermal fluids and clay-sulfide mixes range from 100-500. This indicates that hydrothermal fluids originating in the root-zone of the Snake Pit hydrothermal system may be modified by the precipitation of hydrothermal minerals, either in the shallow subsurface or within chimney structures. Contrasting REE profiles of clay-sulfide aggregates and massive sulfides from Holes 649B and 649G may be accounted for by spatial and/or temporal variations in redox conditions in the plumbing system.