958 resultados para swd: Rapid Prototyping
Resumo:
This paper discusses the hardware foundations of the cryptosystem employed by the Xbox(TM) video game console from Microsoft. A secret boot block overlay is buried within a system ASIC. This secret boot block decrypts and verifies portions of an external FLASH-type ROM. The presence of the secret boot block is camouflaged by a decoy boot block in the external ROM. The code contained within the secret boot block is transferred to the CPU in the clear over a set of high-speed busses where it can be extracted using simple custom hardware. The paper concludes with recommendations for improving the Xbox security system. One lesson of this study is that the use of a high-performance bus alone is not a sufficient security measure, given the advent of inexpensive, fast rapid prototyping services and high-performance FPGAs.
Resumo:
Thermoplastic materials such as cyclic-olefin copolymers (COC) provide a versatile and cost-effective alternative to the traditional glass or silicon substrate for rapid prototyping and industrial scale fabrication of microdevices. To extend the utility of COC as an effective microarray substrate, we developed a new method that enabled for the first time in situ synthesis of DNA oligonucleotide microarrays on the COC substrate. To achieve high-quality DNA synthesis, a SiO(2) thin film array was prepatterned on the inert and hydrophobic COC surface using RF sputtering technique. The subsequent in situ DNA synthesis was confined to the surface of the prepatterned hydrophilic SiO(2) thin film features by precision delivery of the phosphoramidite chemistry using an inkjet DNA synthesizer. The in situ SiO(2)-COC DNA microarray demonstrated superior quality and stability in hybridization assays and thermal cycling reactions. Furthermore, we demonstrate that pools of high-quality mixed-oligos could be cleaved off the SiO(2)-COC microarrays and used directly for construction of DNA origami nanostructures. It is believed that this method will not only enable synthesis of high-quality and low-cost COC DNA microarrays but also provide a basis for further development of integrated microfluidics microarrays for a broad range of bioanalytical and biofabrication applications.
Resumo:
A new experimental procedure has been implemented and a prototype of a novel adhesion tester has been designed and constructed using rapid prototyping technology. A tumbler mixer has been designed and constructed for coating powder material onto a crisp substrate. In the impact separation experiment, the amount of powder detached from one side of a crisp substrate by the effect of impact forces (48g, 77g, 102g) generated by the tester was measured. Salt particles with different size fractions (63-125, 125-180, and 180-250m) and several flavoring powders have been tested extensively. By plotting the detachment versus impact force, the difference obtained between adhesion strength of different flavoring powders (which is a strong function of particle size and surface oil content of the crisp) has been discussed. The detachment rate of salt particles increased (from 1% to 2%) with particle size (from 63 to 250m) in the presence of oil on the surface of the crisp substrate and decreased rapidly with the increase in the amount of oil applied (from 0 to 1%).
Resumo:
The process of making replicas of heritage has traditionally been developed by public agencies, corporations and museums and is not commonly used in schools. Currently there are technologies that allow creating cheap replicas. The new 3D reconstruction software, based on photographs and low cost 3D printers allow to make replicas at a cost much lower than traditional. This article describes the process of creating replicas of the sculpture Goslar Warrior of artist Henry Moore, located in Santa Cruz de Tenerife. To make this process, first, a digital model have been created using Autodesk Recap 360, Autodesk 123D Catch and Autodesk Meshmixer MarkerBot MakerWare applications. Physical replication, has been reproduced in polylactic acid (PLA) by MakerBot Replicator 2 3D printer. In addition, a cost analysis using, in one hand, the printer mentioned, and in the other hand, 3D printing services both online and local, is included. Finally, there has been a specific action with 141 students and 12 high school teachers, who filled a questionnary about the use of sculptural replicas in education.
Resumo:
Este documento é uma sinopse das atividades desenvolvidas e, conhecimentos adquiridos ao longo do estágio na empresa Lightenjin, Sistemas de Iluminação, Lda. e, surge em forma de relatório de projeto. O primeiro projeto foi o desenvolvimento de uma família de candeeiros. O segundo e principal projeto foi a criação e desenvolvimento de um projetor para aplicação em calha eletrificada, com as devidas restrições do Project brief apresentado pela empresa. O terceiro projeto foi o desenvolvimento de um projetor Downlight de encastrar. Houve outras tarefas ligadas à modelação de componentes, desenhos técnicos, manuais de instruções, fichas técnicas e prototipagem rápida. Em todos os projetos foi utilizada a metodologia de trabalho apresentada.
Resumo:
Kular’s work centres on design as a means of engaging with social and cultural issues. Commissioned and exhibited by the V&A Museum, this was a mixed-media collection revealing the trajectories of the Lövy-Singh clan, a fictional East London family of mixed descent. It comprised 26 sculptures and two video pieces, developing the previous explorations of the MacGuffin in narrative (Kular REF Output 2). A catalogue with 28 fictional reminiscences, a genealogy and time line positioned the family’s experiences in geographical locations and historical events. Novel use of rapid-prototyping co-opted an industry process to confuse the experience of artefact and artifice. The design explored the historical, literary and cinematic traditions of the family saga and its relationship to memory and artefact. It presented an archive of objects derived from the flawed, biased memory of the (fictional) curator. A coherent story is replaced by one that is multiple and fragmentary. Kular and Toran (RCA) ‘produced’ the family by mixing their own genealogies with those of renowned 20th-century families, both real and fictional, such as the Magnificent Ambersons and the Rothschilds, positioning family members in everyday situations or key historical moments represented by an object and a ‘memory’ triggered by the object. Concept development was undertaken jointly by Kular and Toran. Kular’s archive research emphasised commonwealth immigrant histories and British 20th-century political events. His production contribution was in 3D modelling, rapid prototyping and display, leading production of the two films and development and editing of the narrative texts. The work was accompanied by a catalogue (2011), was reviewed in ICON Magazine (2010), discussed in an article by Hayward, Jones, Toran and Kular in Design and Culture (2013), and featured in The White Review (No. 2). It was re-exhibited in the group show ‘Politique Fiction’ at la Cité du design, Saint-Étienne, France (2013).
Resumo:
Thesis submitted in the fulfilment of the requirements for the Degree of Master in Electronic and Telecomunications Engineering
Resumo:
Public Display Systems (PDS) increasingly have a greater presence in our cities. These systems provide information and advertising specifically tailored to audiences in spaces such as airports, train stations, and shopping centers. A large number of public displays are also being deployed for entertainment reasons. Sometimes designing and prototyping PDS come to be a laborious, complex and a costly task. This dissertation focuses on the design and evaluation of PDS at early development phases with the aim of facilitating low-effort, rapid design and the evaluation of interactive PDS. This study focuses on the IPED Toolkit. This tool proposes the design, prototype, and evaluation of public display systems, replicating real-world scenes in the lab. This research aims at identifying benefits and drawbacks on the use of different means to place overlays/virtual displays above a panoramic video footage, recorded at real-world locations. The means of interaction studied in this work are on the one hand the keyboard and mouse, and on the other hand the tablet with two different techniques of use. To carry out this study, an android application has been developed whose function is to allow users to interact with the IPED Toolkit using the tablet. Additionally, the toolkit has been modified and adapted to tablets by using different web technologies. Finally the users study makes a comparison about the different means of interaction.
Resumo:
Modern organisms are adapted to a wide variety of habitats and lifestyles. The processes of evolution have led to complex, interdependent, well-designed mechanisms of todays world and this research challenge is to transpose these innovative solutions to resolve problems in the context of architectural design practice, e.g., to relate design by nature with design by human. In a design by human environment, design synthesis can be performed with the use of rapid prototyping techniques that will enable to transform almost instantaneously any 2D design representation into a physical three-dimensional model, through a rapid prototyping printer machine. Rapid prototyping processes add layers of material one on top of another until a complete model is built and an analogy can be established with design by nature where the natural lay down of earth layers shapes the earth surface, a natural process occurring repeatedly over long periods of time. Concurrence in design will particularly benefit from rapid prototyping techniques, as the prime purpose of physical prototyping is to promptly assist iterative design, enabling design participants to work with a three-dimensional hardcopy and use it for the validation of their design-ideas. Concurrent design is a systematic approach aiming to facilitate the simultaneous involvment and commitment of all participants in the building design process, enabling both an effective reduction of time and costs at the design phase and a quality improvement of the design product. This paper presents the results of an exploratory survey investigating both how computer-aided design systems help designers to fully define the shape of their design-ideas and the extent of the application of rapid prototyping technologies coupled with Internet facilities by design practice. The findings suggest that design practitioners recognize that these technologies can greatly enhance concurrence in design, though acknowledging a lack of knowledge in relation to the issue of rapid prototyping.
Resumo:
This paper describes the use of 800nm femtosecond infrared (IR) and 248nm nanosecond ultraviolet (UV) laser radiation in performing ablative micromachining of parylene-C on SiO2 substrates for the patterning of human hNT astrocytes. Results are presented that support the validity of using IR laser ablative micromachining for patterning human hNT astrocytes cells while UV laser radiation produces photo-oxidation of the parylene-C and destroys cell patterning. The findings demonstrate how IR laser ablative micromachining of parylene-C on SiO2 substrates can offer a low cost, accessible alternative for rapid prototyping, high yield cell patterning.
Resumo:
TESSA is a toolkit for experimenting with sensory augmentation. It includes hardware and software to facilitate rapid prototyping of interfaces that can enhance one sense using information gathered from another sense. The toolkit contains a range of sensors (e.g. ultrasonics, temperature sensors) and actuators (e.g. tactors or stereo sound), designed modularly so that inputs and outputs can be easily swapped in and out and customized using TESSA’s graphical user interface (GUI), with “real time” feedback. The system runs on a Raspberry Pi with a built-in touchscreen, providing a compact and portable form that is amenable for field trials. At CHI Interactivity, the audience will have the opportunity to experience sensory augmentation effects using this system, and design their own sensory augmentation interfaces.
Resumo:
Background and aims Evaluating status in patients with motor fluctuations is complex and occasional observations/measurements do not give an adequate picture as to the time spent in different states. We developed a test battery to assess advanced Parkinson patients' status consisting of diary assessments and motor tests. This battery was constructed and implemented on a handheld computer with built-in mobile communication. In fluctuating patients, it should typically be used several times daily in the home environment, over periods of about one week. The aim of this battery is to provide status information in order to evaluate treatment effects in clinical practice and research, follow up treatments and disease progression and predict outcome to optimize treatment strategy. Methods Selection of diary questions was based on a previous study with Duodopa® (DIREQT). Tapping tests (with and without visual cueing) and a spiral drawing test were added. Rapid prototyping was used in development of the user interface. An evaluation with two pilot patients was performed before and after receiving new treatments for advanced disease (one received Duodopa® and one received DBS). Speed and proportion missed taps were calculated for the tapping tests and entropy of the radial drawing velocity was calculated for the spiral tests. Test variables were evaluated using non-parametric statistics. Results Post-treatment improvement was detected in both patients in many of the test variables. Conclusions Although validation work remains, preliminary results are promising and the test battery is currently being evaluated in a long-term health economics study with Duodopa® (DAPHNE).
Resumo:
In the teaching practice of architecture and urbanism in Brazil, educational legislation views modeling laboratories and workshops as an indispensable component of the infrastructure required for the good functioning of any architectural course of study. Although the development of information technology at the international level has created new possibilities for digital production of architectural models, research in this field being underway since the early 1990s, it is only from 2007 onwards that such technologies started to be incorporated into the teaching activity of architecture and urbanism in Brazil, through the pioneering experience at LAPAC/FEC/UNICAMP. It is therefore a recent experiment whose challenges can be highlighted through the following examples: (i) The implementation of digital prototyping laboratories in undergraduate courses of architecture and urbanism is still rare in Brazil; (ii) As a new developing field with few references and application to undergraduate programs, it is hard to define methodological procedures suitable for the pedagogical curricula already implemented or which have already been consolidated over the years; (iii) The new digital ways for producing tridimensional models are marked with specificities which make it difficult to fit them within the existing structures of model laboratories and workshops. Considering the above, the present thesis discusses the tridimensional model as a tool which may contribute to the development of students skills in perceiving, understanding and representing tridimensional space. Analysis is made of the relation between different forms of models and the teaching of architectural project, with emphasis on the design process. Starting from the conceptualization of the word model as it is used in architecture and urbanism, an attempt is made to identify types of tridimensional models used in the process of project conception, both through the traditional, manual way of model construction as well as through the digital ones. There is also an explanation on how new technologies for digital production of models through prototyping are being introduced in undergraduate academic programs of architecture and urbanism in Brazil, as well as a review of recent academic publications in this area. Based on the paradigm of reflective practice in teaching as designed by Schön (2000), the experiment applied in the research was undertaken in the integrated workshop courses of architectural project in the undergraduate program of architecture and urbanism at Universidade Federal do Rio Grande do Norte. Along the experiment, physical modeling, geometric modeling and digital prototyping are used in distinct moments of the design process with the purpose of observing the suitability of each model to the project s phases. The procedures used in the experiments are very close to the Action Research methodology in which the main purpose is the production of theoretical knowledge by improving the practice. The process was repeated during three consecutive semesters and reflection on the results which were achieved in each cycle helped enhancing the next one. As a result, a methodological procedure is proposed which consists of the definition of the Tridimensional Model as the integrating element for the contents studied in a specific academic period or semester. The teaching of Architectural Project as it is developed along the fifth academic period of the Architecture and Urbanism undergraduate program of UFRN is taken as a reference
Resumo:
The manufacturing of above and below-knee prosthesis starts by taking surfac measurements of the patient s residual limb. This demands the making of a cartridg with appropriate fitting and customized to the profile of each patient. The traditiona process in public hospitals in Brazil begins with the completion of a record file (according to law nº388, of July 28, 1999 by the ministry of the health) for obtaining o the prosthesis, where it is identified the amputation level, equipment type, fitting type material, measures etc. Nowadays, that work is covered by the Brazilian Nationa Health Service (SUS) and is accomplished in a manual way being used commo measuring tapes characterizing a quite rudimentary, handmade work and without an accuracy.In this dissertation it is presented the development of a computer integrate tool that it include CAD theory, for visualization of both above and below-knee prosthesis in 3D (i.e. OrtoCAD), as well as, the design and the construction a low cos electro-mechanic 3D scanner (EMS). This apparatus is capable to automatically obtain geometric information of the stump or of the healthy leg while ensuring smalle uncertainty degree for all measurements. The methodology is based on reverse engineering concepts so that the EMS output is fed into the above mentioned academi CAD software in charge of the 3D computer graphics reconstruction of the residualimb s negative plaster cast or even the healthy leg s mirror image. The obtained results demonstrate that the proposed model is valid, because it allows the structura analysis to be performed based on the requested loads, boundary conditions, material chosen and wall thickness. Furthermore it allows the manufacturing of a prosthesis cartridge meeting high accuracy engineering patterns with consequent improvement in the quality of the overall production process
Resumo:
Due to advances in the manufacturing process of orthopedic prostheses, the need for better quality shape reading techniques (i.e. with less uncertainty) of the residual limb of amputees became a challenge. To overcome these problems means to be able in obtaining accurate geometry information of the limb and, consequently, better manufacturing processes of both transfemural and transtibial prosthetic sockets. The key point for this task is to customize these readings trying to be as faithful as possible to the real profile of each patient. Within this context, firstly two prototype versions (α and β) of a 3D mechanical scanner for reading residual limbs shape based on reverse engineering techniques were designed. Prototype β is an improved version of prototype α, despite remaining working in analogical mode. Both prototypes are capable of producing a CAD representation of the limb via appropriated graphical sheets and were conceived to work purely by mechanical means. The first results were encouraging as they were able to achieve a great decrease concerning the degree of uncertainty of measurements when compared to traditional methods that are very inaccurate and outdated. For instance, it's not unusual to see these archaic methods in action by making use of ordinary home kind measure-tapes for exploring the limb's shape. Although prototype β improved the readings, it still required someone to input the plotted points (i.e. those marked in disk shape graphical sheets) to an academic CAD software called OrtoCAD. This task is performed by manual typing which is time consuming and carries very limited reliability. Furthermore, the number of coordinates obtained from the purely mechanical system is limited to sub-divisions of the graphical sheet (it records a point every 10 degrees with a resolution of one millimeter). These drawbacks were overcome by designing the second release of prototype β in which it was developed an electronic variation of the reading table components now capable of performing an automatic reading (i.e. no human intervention in digital mode). An interface software (i.e. drive) was built to facilitate data transfer. Much better results were obtained meaning less degree of uncertainty (it records a point every 2 degrees with a resolution of 1/10 mm). Additionally, it was proposed an algorithm to convert the CAD geometry, used by OrtoCAD, to an appropriate format and enabling the use of rapid prototyping equipment aiming future automation of the manufacturing process of prosthetic sockets.