983 resultados para surface electronic phenomena
Resumo:
Zinc indium tin oxide (ZITO) transparent conductive oxide layers were deposited via radio frequency (RF) magnetron co-sputtering at room temperature. A series of samples with gradually varying zinc content was investigated. The samples were characterized with x-ray and ultraviolet photoemission spectroscopy (XPS, UPS) to determine the electronic structure of the surface. Valence and conduction bands maxima (VBM, CBM), and work function were determined. The experiments indicate that increasing Zn content results in films with a higher defect rate at the surface leading to the formation of a degenerately doped surface layer if the Zn content surpasses 50%. Furthermore, the experiments demonstrate that ZITO is susceptible to ultraviolet light induced work function reduction, similar to what was earlier observed on ITO and TiO2 films.
Resumo:
The transport of macromolecules, such as low-density lipoprotein (LDL), and their accumulation in the layers of the arterial wall play a critical role in the creation and development of atherosclerosis. Atherosclerosis is a disease of large arteries e.g., the aorta, coronary, carotid, and other proximal arteries that involves a distinctive accumulation of LDL and other lipid-bearing materials in the arterial wall. Over time, plaque hardens and narrows the arteries. The flow of oxygen-rich blood to organs and other parts of the body is reduced. This can lead to serious problems, including heart attack, stroke, or even death. It has been proven that the accumulation of macromolecules in the arterial wall depends not only on the ease with which materials enter the wall, but also on the hindrance to the passage of materials out of the wall posed by underlying layers. Therefore, attention was drawn to the fact that the wall structure of large arteries is different than other vessels which are disease-resistant. Atherosclerosis tends to be localized in regions of curvature and branching in arteries where fluid shear stress (shear rate) and other fluid mechanical characteristics deviate from their normal spatial and temporal distribution patterns in straight vessels. On the other hand, the smooth muscle cells (SMCs) residing in the media layer of the arterial wall respond to mechanical stimuli, such as shear stress. Shear stress may affect SMC proliferation and migration from the media layer to intima. This occurs in atherosclerosis and intimal hyperplasia. The study of blood flow and other body fluids and of heat transport through the arterial wall is one of the advanced applications of porous media in recent years. The arterial wall may be modeled in both macroscopic (as a continuous porous medium) and microscopic scales (as a heterogeneous porous medium). In the present study, the governing equations of mass, heat and momentum transport have been solved for different species and interstitial fluid within the arterial wall by means of computational fluid dynamics (CFD). Simulation models are based on the finite element (FE) and finite volume (FV) methods. The wall structure has been modeled by assuming the wall layers as porous media with different properties. In order to study the heat transport through human tissues, the simulations have been carried out for a non-homogeneous model of porous media. The tissue is composed of blood vessels, cells, and an interstitium. The interstitium consists of interstitial fluid and extracellular fibers. Numerical simulations are performed in a two-dimensional (2D) model to realize the effect of the shape and configuration of the discrete phase on the convective and conductive features of heat transfer, e.g. the interstitium of biological tissues. On the other hand, the governing equations of momentum and mass transport have been solved in the heterogeneous porous media model of the media layer, which has a major role in the transport and accumulation of solutes across the arterial wall. The transport of Adenosine 5´-triphosphate (ATP) is simulated across the media layer as a benchmark to observe how SMCs affect on the species mass transport. In addition, the transport of interstitial fluid has been simulated while the deformation of the media layer (due to high blood pressure) and its constituents such as SMCs are also involved in the model. In this context, the effect of pressure variation on shear stress is investigated over SMCs induced by the interstitial flow both in 2D and three-dimensional (3D) geometries for the media layer. The influence of hypertension (high pressure) on the transport of lowdensity lipoprotein (LDL) through deformable arterial wall layers is also studied. This is due to the pressure-driven convective flow across the arterial wall. The intima and media layers are assumed as homogeneous porous media. The results of the present study reveal that ATP concentration over the surface of SMCs and within the bulk of the media layer is significantly dependent on the distribution of cells. Moreover, the shear stress magnitude and distribution over the SMC surface are affected by transmural pressure and the deformation of the media layer of the aorta wall. This work reflects the fact that the second or even subsequent layers of SMCs may bear shear stresses of the same order of magnitude as the first layer does if cells are arranged in an arbitrary manner. This study has brought new insights into the simulation of the arterial wall, as the previous simplifications have been ignored. The configurations of SMCs used here with elliptic cross sections of SMCs closely resemble the physiological conditions of cells. Moreover, the deformation of SMCs with high transmural pressure which follows the media layer compaction has been studied for the first time. On the other hand, results demonstrate that LDL concentration through the intima and media layers changes significantly as wall layers compress with transmural pressure. It was also noticed that the fraction of leaky junctions across the endothelial cells and the area fraction of fenestral pores over the internal elastic lamina affect the LDL distribution dramatically through the thoracic aorta wall. The simulation techniques introduced in this work can also trigger new ideas for simulating porous media involved in any biomedical, biomechanical, chemical, and environmental engineering applications.
Resumo:
This thesis presents experimental studies of rare earth (RE) metal induced structures on Si(100) surfaces. Two divalent RE metal adsorbates, Eu and Yb, are investigated on nominally flat Si(100) and on vicinal, stepped Si(100) substrates. Several experimental methods have been applied, including scanning tunneling microscopy/spectroscopy (STM/STS), low energy electron diffraction (LEED), synchrotron radiation photoelectron spectroscopy (SR-PES), Auger electron spectroscopy (AES), thermal desorption spectroscopy (TDS), and work function change measurements (Δφ). Two stages can be distinguished in the initial growth of the RE/Si interface: the formation of a two-dimensional (2D) adsorbed layer at submonolayer coverage and the growth of a three-dimensional (3D) silicide phase at higher coverage. The 2D phase is studied for both adsorbates in order to discover whether they produce common reconstructions or reconstructions common to the other RE metals. For studies of the 3D phase Yb is chosen due to its ability to crystallize in a hexagonal AlB2 type lattice, which is the structure of RE silicide nanowires, therefore allowing for the possibility of the growth of one-dimensional (1D) wires. It is found that despite their similar electronic configuration, Eu and Yb do not form similar 2D reconstructions on Si(100). Instead, a wealth of 2D structures is observed and atomic models are proposed for the 2×3-type reconstructions. In addition, adsorbate induced modifications on surface morphology and orientational symmetry are observed. The formation of the Yb silicide phase follows the Stranski-Krastanov growth mode. Nanowires with the hexagonal lattice are observed on the flat Si(100) substrate, and moreover, an unexpectedly large variety of growth directions are revealed. On the vicinal substrate the growth of the silicide phase as 3D islands and wires depends drastically on the growth conditions. The conditions under which wires with high aspect ratio and single orientation parallel to the step edges can be formed are demonstrated.
Resumo:
Power electronic converter drives use, for the sake of high efficiency, pulse-width modulation that results in sequences of high-voltage high-frequency steep-edged pulses. Such a signal contains a set of high harmonics not required for control purposes. Harmonics cause reflections in the cable between the motor and the inverter leading to faster winding insulation ageing. Bearing failures and problems with electromagnetic compatibility may also result. Electrical du/dt filters provide an effective solution to problems caused by pulse-width modulation, thereby increasing the performance and service life of the electrical machines. It is shown that RLC filters effectively decrease the reflection phenomena in the cable. Improved (simple, but effective) solutions are found for both differential- and common-mode signals; these solutions use a galvanic connection between the RLC filter star point and the converter DC link. Foil chokes and film capacitors are among the most widely used components in high-power applications. In actual applications they can be placed in different parts of the cabinet. This fact complicates the arrangement of the cabinet and decreases the reliability of the system. In addition, the inductances of connection wires may prevent filtration at high frequencies. This thesis introduces a new hybrid LC filter that uses a natural capacitance between the turns of the foil choke based on integration of an auxiliary layer into it. The main idea of the hybrid LC filter results from the fact that both the foil choke and the film capacitors have the same roll structure. Moreover, the capacitance between the turns (“intra capacitance”) of the foil inductors is the reason for the deterioration of their properties at high frequencies. It is shown that the proposed filter has a natural cancellation of the intra capacitance. A hybrid LC filter may contain two or more foil layers isolated from each other and coiled on a core. The core material can be iron or even air as in the filter considered in this work. One of the foils, called the main foil, can be placed between the inverter and the motor cable. Other ones, called auxiliary foils, may be connected in star to create differential-mode noise paths, and then coupled to the DC link midpoint to guarantee a traveling path, especially for the common-mode currents. This way, there is a remarkable capacitance between the main foil and the auxiliary foil. Investigations showed that such a system can be described by a simple equivalent LC filter in a wide range of frequencies. Because of its simple hybrid construction, the proposed LC filter can be a cost-effective and competitive solution for modern power drives. In the thesis, the application field of the proposed filter is considered and determined. The basics of hybrid LC filter design are developed further. High-frequency behaviour of the proposed filter is analysed by simulations. Finally, the thesis presents experimental data proving that the hybrid LC filter can be used for du/dt of PWM pulses and reduction of common-mode currents.
Resumo:
Low-cost tungsten monometallic catalysts containing variable amounts of metal (4.5, 7.1 and 8.5%W) were prepared by impregnating alumina with ammonium metatungstate as an inexpensive precursor. The catalysts were characterized using ICP, XPS, XRD, TPR and hydrogen chemisorption. These techniques revealed mainly WO3-Al2O3 (W6+) species on the surface. The effects of the content of W nanoparticles and reaction temperature on activity and selectivity for the partial hydrogenation of 3-hexyne, a non-terminal alkyne, were assessed under moderate conditions of temperature and pressure. The monometallic catalysts prepared were found to be active and stereoselective for the production of (Z )-3-hexene, had the following order: 7.1WN/A > 8.5 WN/A ≥ 4.5 WN/A. Additionally, the performance of the synthesized xWN/A catalysts exhibited high sensitivity to temperature variation. In all cases, the maximum 3-hexyne total conversion and selectivity was achieved at 323 K. The performance of the catalysts was considered to be a consequence of two phenomena: a) the electronic effects, related to the high charge of W (+6), causing an intensive dipole moment in the hydrogen molecule (van der Waals forces) and leading to heterolytic bond rupture; the H+ and H- species generated approach a 3-hexyne adsorbate molecule and cause heterolytic rupture of the C≡C bond into C- = C+; and b) steric effects related to the high concentration of WO3 on 8.5WN/A that block the Al2O3 support. Catalyst deactivation was detected, starting at about 50 min of reaction time. Electrodeficient W6+ species are responsible for the formation of green oil at the surface level, blocking pores and active sites of the catalyst, particularly at low reaction temperatures (293 and 303 K). The resulting best catalyst, 7.1WN/A, has low fabrication cost and high selectivity for (Z )-3-hexene (94%) at 323 K. This selectivity is comparable to that of the classical and more expensive industrial Lindlar catalyst (5 wt% Pd). The alumina supported tungsten catalysts are low-cost potential replacements for the Lindlar industrial catalyst. These catalysts could also be used for preparing bimetallic W-Pd catalysts for selective hydrogenation of terminal and non-terminal alkynes.
Resumo:
In this study we discuss the atomic level phenomena on transition metal surfaces. Transition metals are widely used as catalysts in industry. Therefore, reactions occuring on transition metal surfaces have large industrial intrest. This study addresses problems in very small size and time scales, which is an important part in the overall understanding of these phenomena. The publications of this study can be roughly divided into two categories: The adsorption of an O2 molecule to a surface, and surface structures of preadsorbed atoms. These two categories complement each other, because in the realistic case there are always some preadsorbed atoms at the catalytically active surfaces. However, all transition metals have an active d-band, and this study is also a study of the in uence of the active d-band on other atoms. At the rst part of this study we discuss the adsorption and dissociation of an O2 molecule on a clean stepped palladium surface and a smooth palladium surface precovered with sulphur and oxygen atoms. We show how the reactivity of the surface against the oxygen molecule varies due to the geometry of the surface and preadsorbed atoms. We also show how the molecular orbitals of the oxygen molecule evolve when it approaches the di erent sites on the surface. In the second part we discuss the surface structures of transition metal surfaces. We study the structures that are intresting on account of the Rashba e ect and charge density waves. We also study the adsorption of suphur on a gold surface, and surface structures of it. In this study we use ab-initio based density functional theory methods to simulate the results. We also compare the results of our methods to the results obtained with the Low-Energy-Electron-Difraction method.
Resumo:
The understanding and engineering of bismuth (Bi) containing semiconductor surfaces are signi cant in the development of novel semiconductor materials for electronic and optoelectronic devices such as high-e ciency solar cells, lasers and light emitting diodes. For example, a Bi surface layer can be used as a surfactant which oats on a III-V compound-semiconductor surface during the epitaxial growth of IIIV lms. This Bi surfactant layer improves the lm-growth conditions if compared to the growth without the Bi layer. Therefore, detailed knowledge of the properties of the Bi/III-V surfaces is needed. In this thesis, well-de ned surface layers containing Bi have been produced on various III-V semiconductor substrates. The properties of these Bi-induced surfaces have been measured by low-energy electron di raction (LEED), scanning-tunneling microscopy and spectroscopy (STM), and synchrotron-radiation photoelectron spectroscopy. The experimental results have been compared with theoretically calculated results to resolve the atomic structures of the studied surfaces. The main ndings of this research concern the determination of the properties of an unusual Bi-containing (2×1) surface structure, the discovery and characterization of a uniform pattern of Bi nanolines, and the optimization of the preparation conditions for this Bi-nanoline pattern.
Resumo:
Crystal properties, product quality and particle size are determined by the operating conditions in the crystallization process. Thus, in order to obtain desired end-products, the crystallization process should be effectively controlled based on reliable kinetic information, which can be provided by powerful analytical tools such as Raman spectrometry and thermal analysis. The present research work studied various crystallization processes such as reactive crystallization, precipitation with anti-solvent and evaporation crystallization. The goal of the work was to understand more comprehensively the fundamentals, phenomena and utilizations of crystallization, and establish proper methods to control particle size distribution, especially for three phase gas-liquid-solid crystallization systems. As a part of the solid-liquid equilibrium studies in this work, prediction of KCl solubility in a MgCl2-KCl-H2O system was studied theoretically. Additionally, a solubility prediction model by Pitzer thermodynamic model was investigated based on solubility measurements of potassium dihydrogen phosphate with the presence of non-electronic organic substances in aqueous solutions. The prediction model helps to extend literature data and offers an easy and economical way to choose solvent for anti-solvent precipitation. Using experimental and modern analytical methods, precipitation kinetics and mass transfer in reactive crystallization of magnesium carbonate hydrates with magnesium hydroxide slurry and CO2 gas were systematically investigated. The obtained results gave deeper insight into gas-liquid-solid interactions and the mechanisms of this heterogeneous crystallization process. The research approach developed can provide theoretical guidance and act as a useful reference to promote development of gas-liquid reactive crystallization. Gas-liquid mass transfer of absorption in the presence of solid particles in a stirred tank was investigated in order to gain understanding of how different-sized particles interact with gas bubbles. Based on obtained volumetric mass transfer coefficient values, it was found that the influence of the presence of small particles on gas-liquid mass transfer cannot be ignored since there are interactions between bubbles and particles. Raman spectrometry was successfully applied for liquid and solids analysis in semi-batch anti-solvent precipitation and evaporation crystallization. Real-time information such as supersaturation, formation of precipitates and identification of crystal polymorphs could be obtained by Raman spectrometry. The solubility prediction models, monitoring methods for precipitation and empirical model for absorption developed in this study together with the methodologies used gives valuable information for aspects of industrial crystallization. Furthermore, Raman analysis was seen to be a potential controlling method for various crystallization processes.
Resumo:
This study evaluated sex-related differences in the tibialis anterior (TA) surface electromyography (EMG) to force relationship. One-hundred participants (50 males and 50 females) performed three isometric contractions at 20, 40, 60, 80, and 100% of maximal voluntary contraction (MVC) in an apparatus designed to isolate the action of the dorsiflexors. The surface EMG signal was amplified (lOOOx), band-pass filtered (10-500Hz), and sampled at 2048 Hz. The load cell signal was low-passed filtered at 100 Hz and sampled at the same rate. Males were stronger than females {P <0.05). However, there was no significant difference in root-mean-square (RMS) values between sexes {P <0.05). Both sexes exhibited a quadratic increase in RMS across force levels (P <0.05). The mean power frequency (MNF) for males was greater than for females {P <0.05). Males and females exhibited a linear increase in both frequency measures up to 80% of MVC (P <0.05). Between 80 and 100% MVC, the frequency values for the females plateaued while males showed a decrease {P <0.05). The magnitude of the difference in MNF between males and females was consistent with sex-specific TA physiology. In general, the pattern of means for RMS and MNF between males and females revealed no sex-related differences in the surface EMG/force relationship. We therefore conclude that there are no sex-related differences in the gradation of muscle force.
Resumo:
Cell surface proteins obtained by alkaline extraction from isolated cell walls of Mortierella pusilla and M. candelabrum, host and nonhost, respectively, to the mycoparasite, Piptocephalis virginiana, were tested for their ability to agglutinate mycoparasite spores. The host cell wall protein extract had a high agglutinating activity (788 a.u. mg- t ) as compared with the nonhost extract (21 a.li. mg- t ). SDS-polyacrylamide gel electrophoresis of the cell wall proteins revealed four protein bands, a, b, c, and d (Mr 117, 100, 85 and 64 kd, respectively) at the host surface, but not at the nonhost surface, except for the faint band c. Deletion of proteins b or c from the host cell wall protein extract significantly reduced its agglutinating activity. Proteins band c, obtained as purified preparations by a series of procedures, were shown to be two glycoproteins. Carbohydrate analysis by gas chromatography demonstrated that glucose and Nacetylglucosamine were the major carbohydrate components of the glycoproteins. It was further shown that the agglutinating activity of the pure preparation containing both band c was 500-850 times that of the single glycoproteins, suggesting the involvement of both glycoproteins in agglutination. The results suggest that the glycoproteins band c are the two subunits of agglutinin present at the host cell surface. The two glycoproteins band c purified from the host cell wall protein extract were further examined after various treatments for their possible role in agglutination, attachment and appressorium formation by the mycoparasite. Results obtained by agglutination and attachment tests showed: (1) the two glycoprotein-s are not only an agglutinin responsible for the mycoparasite spore agglutination, but may also serve as a receptor for the specific recognition, attachment and appressorium formation by the mycoparasite; (2) treatment of the rnycoparasite spores with various sugars revealed that arabinose, glucose and N-acetylglucosamine inhibited the agglutination and attachment activity of the glycoproteins, however, the relative percentage of appressorium formation was not affected by the above sugars; (3) the two glycoproteins are relatively stable with respect to their agglutinin and receptor functions. The present results suggest that the agglutination and attachment may be mediated directly by certain sugars present at the host and mycoparasite cell surfaces while the appressorlum formation may be the response of complementary combinations of both sugar and protein, the two parts of the glycoproteins at the interacting surfaces of two fungi.
Resumo:
A room temperature ferromagnetic hysteresis is observed in single crystal strontium titanate substrates as purchased from several manufacturers. It was found that polishing all sides of the substrates removed this observed hysteresis, suggesting that the origin of the ferromagnetic behavior resides on the surface of the substrates. X-ray diffraction and energy dispersive x-ray spectra were measured however they were unable to detect any impurity phases. In similar semiconducting oxides it was previously suggested that ferromagnetism could originate in oxygen vacancies or from disorder within the single crystal. To this end substrates were annealed in both air and vacuum in a range of temperatures (600°C to 1100°G) to both create bulk oxygen vacancies and to heal surface damage. Annealing in vacuum was found to create a measureable number of oxygen vacancies however their creation could not be correlated to the ferromagnetic signal of the substrate. Annealing in air was found to effect the remnant moment of the substrate as well as the width of the x-ray diffraction peaks on the unpolished face, weakly suggesting a relation between surface based disorder and ferromagnetism. Argon ion bombardment was employed to create a layer of surface disorder in the polished crystal, however it was not found to induce ferromagnetism. It was found that acid etching was sufficient to remove the ferromagnetism from as purchased samples and similarly simulated handling with stainless steel tweezers was sufficient to re-create the ferromagnetism. It is suggested that the origin of this ferromagnetism in SrTi03 is surface contaminants (mainly iron).
Resumo:
Indwelling electromyography (EMG) has great diagnostic value but its invasive and often painful characteristics make it inappropriate for monitoring human movement. Spike shape analysis of the surface electromyographic signal responds to the call for non-invasive EMG measures for monitoring human movement and detecting neuromuscular disorders. The present study analyzed the relationship between surface and indwelling EMG interference patterns. Twenty four males and twenty four females performed three isometric dorsiflexion contractions at five force levels from 20% to maximal force. The amplitude measures increased differently between electrode types, attributed to the electrode sensitivity. The frequency measures were different between traditional and spike shape measures due to different noise rejection criteria. These measures were also different between surface and indwelling EMG due to the low-pass tissue filtering effect. The spike shape measures, thought to collectively function as a means to differentiate between motor unit characteristics, changed independent of one another.
Resumo:
Digital Terrain Models (DTMs) are important in geology and geomorphology, since elevation data contains a lot of information pertaining to geomorphological processes that influence the topography. The first derivative of topography is attitude; the second is curvature. GIS tools were developed for derivation of strike, dip, curvature and curvature orientation from Digital Elevation Models (DEMs). A method for displaying both strike and dip simultaneously as colour-coded visualization (AVA) was implemented. A plug-in for calculating strike and dip via Least Squares Regression was created first using VB.NET. Further research produced a more computationally efficient solution, convolution filtering, which was implemented as Python scripts. These scripts were also used for calculation of curvature and curvature orientation. The application of these tools was demonstrated by performing morphometric studies on datasets from Earth and Mars. The tools show promise, however more work is needed to explore their full potential and possible uses.
Resumo:
Cette thèse constitue à la fois un apport de nature clinique et technologique dans l’approche diagnostique du glaucome. Plus précisément, nous nous proposons d’étudier une nouvelle façon de détecter le glaucome par la mesure de l’asymétrie du rapport de la surface de l’anneau neurorétinien et de la surface de la papille ou du disque optique ou rim to disc area asymmetry ratio (RADAAR). Pour atteindre cet objectif, nous avons recours à une base de données composée d’une population subdivisée en 4 différents groupes de diagnostic (normal, glaucome possible, glaucome probable et glaucome définitif). Les mesures du RADAAR sont calculées de différentes façons à partir des paramètres stéréométriques de la tête du nerf optique des sujets, produits par la microscopie confocale à balayage laser (Heidelberg Retina Tomograph (HRT) (Heidelberg Engineering, Germany)). Nous procédons à une analyse de données grâce au logiciel SPSS où nous mettons en exergue la distribution du RADAAR dans les différentes populations, sa validité et son utilité dans le dépistage du glaucome. Nous enrôlons donc 523 sujets dans cette étude avec 82 sujets atteints de glaucome définitif. La moyenne d’âge est de 62 ans. Il y a plus de femmes que d’hommes et plus de Caucasiens que d’Africains Caribéens. Nous trouvons que la distribution de la mesure du RADAAR est différente des sujets d’un groupe de diagnostic à l’autre. En termes de performance, la sensibilité de la mesure du RADAAR est très basse c'est-à-dire que sa capacité de détecter la maladie est basse. En revanche la mesure du RADAAR est plus spécifique c'est-à-dire que sa capacité d’identifier les sujets exempts de la maladie est plus grande. Elle tendrait à être aussi plus performante chez les Africains Caribéens que chez les Caucasiens. De même, elle serait plus sensible chez les hommes que chez les femmes. La mesure du RADAAR est utile si on l’associe à une autre méthode de diagnostic comme l’analyse de Régression de Moorfields (MRA) incluse dans le logiciel du HRT3 spécialement lors de la détection du glaucome dans la population à haut risque. En définitive, nous déterminons que la mesure du RADAAR se veut un outil d’aide au diagnostic. Elle est particulièrement intéressante dans le contexte de dépistage de glaucome.