896 resultados para support vector


Relevância:

60.00% 60.00%

Publicador:

Resumo:

There are many techniques for electricity market price forecasting. However, most of them are designed for expected price analysis rather than price spike forecasting. An effective method of predicting the occurrence of spikes has not yet been observed in the literature so far. In this paper, a data mining based approach is presented to give a reliable forecast of the occurrence of price spikes. Combined with the spike value prediction techniques developed by the same authors, the proposed approach aims at providing a comprehensive tool for price spike forecasting. In this paper, feature selection techniques are firstly described to identify the attributes relevant to the occurrence of spikes. A simple introduction to the classification techniques is given for completeness. Two algorithms: support vector machine and probability classifier are chosen to be the spike occurrence predictors and are discussed in details. Realistic market data are used to test the proposed model with promising results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There is not a specific test to diagnose Alzheimer`s disease (AD). Its diagnosis should be based upon clinical history, neuropsychological and laboratory tests, neuroimaging and electroencephalography (EEG). Therefore, new approaches are necessary to enable earlier and more accurate diagnosis and to follow treatment results. In this study we used a Machine Learning (ML) technique, named Support Vector Machine (SVM), to search patterns in EEG epochs to differentiate AD patients from controls. As a result, we developed a quantitative EEG (qEEG) processing method for automatic differentiation of patients with AD from normal individuals, as a complement to the diagnosis of probable dementia. We studied EEGs from 19 normal subjects (14 females/5 males, mean age 71.6 years) and 16 probable mild to moderate symptoms AD patients (14 females/2 males, mean age 73.4 years. The results obtained from analysis of EEG epochs were accuracy 79.9% and sensitivity 83.2%. The analysis considering the diagnosis of each individual patient reached 87.0% accuracy and 91.7% sensitivity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Here, we examine morphological changes in cortical thickness of patients with Alzheimer`s disease (AD) using image analysis algorithms for brain structure segmentation and study automatic classification of AD patients using cortical and volumetric data. Cortical thickness of AD patients (n = 14) was measured using MRI cortical surface-based analysis and compared with healthy subjects (n = 20). Data was analyzed using an automated algorithm for tissue segmentation and classification. A Support Vector Machine (SVM) was applied over the volumetric measurements of subcortical and cortical structures to separate AD patients from controls. The group analysis showed cortical thickness reduction in the superior temporal lobe, parahippocampal gyrus, and enthorhinal cortex in both hemispheres. We also found cortical thinning in the isthmus of cingulate gyrus and middle temporal gyrus at the right hemisphere, as well as a reduction of the cortical mantle in areas previously shown to be associated with AD. We also confirmed that automatic classification algorithms (SVM) could be helpful to distinguish AD patients from healthy controls. Moreover, the same areas implicated in the pathogenesis of AD were the main parameters driving the classification algorithm. While the patient sample used in this study was relatively small, we expect that using a database of regional volumes derived from MRI scans of a large number of subjects will increase the SVM power of AD patient identification.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pattern recognition methods have been successfully applied in several functional neuroimaging studies. These methods can be used to infer cognitive states, so-called brain decoding. Using such approaches, it is possible to predict the mental state of a subject or a stimulus class by analyzing the spatial distribution of neural responses. In addition it is possible to identify the regions of the brain containing the information that underlies the classification. The Support Vector Machine (SVM) is one of the most popular methods used to carry out this type of analysis. The aim of the current study is the evaluation of SVM and Maximum uncertainty Linear Discrimination Analysis (MLDA) in extracting the voxels containing discriminative information for the prediction of mental states. The comparison has been carried out using fMRI data from 41 healthy control subjects who participated in two experiments, one involving visual-auditory stimulation and the other based on bimanual fingertapping sequences. The results suggest that MLDA uses significantly more voxels containing discriminative information (related to different experimental conditions) to classify the data. On the other hand, SVM is more parsimonious and uses less voxels to achieve similar classification accuracies. In conclusion, MLDA is mostly focused on extracting all discriminative information available, while SVM extracts the information which is sufficient for classification. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O estresse pode afetar qualquer pessoa, independente de idade, sexo ou etnia. O organismo humano o utiliza como uma resposta adaptativa frente a situações diversas, as quais requeiram alguma adaptação do organismo para que possa enfrentar tal situação. Dependendo do estímulo estressor, pode ser gerado no indivíduo desgastes físico, mental ou emocional, no entanto, o estresse não representa necessariamente algo ruim ou patológico; este é um mecanismo de adaptação vital para a sobrevivência da espécie humana. Porém, o número de pessoas que são afetadas de forma negativa pelo estresse tem crescido imensamente nas últimas décadas. Pesquisas destacam que nos Estados Unidos cerca de 60% a 90% dos atendimentos médicos estão relacionados de alguma maneira com o estresse, enquanto que no Brasil aproximadamente 80% da população sofre de estresse, sendo que desses, 30% encontram-se na fase mais crítica, a chamada fase de exaustão. Tendo em vista que a principal forma de identificação de estresse ainda é realizada através do uso de questionário de autorrelato. O presente estudo apresenta como contribuição uma metodologia de análise do nível de estresse baseada na variação da condutância galvânica da pele e de sinais de eletroencefalografia, sendo utilizados como parâmetros a assimetria do ritmo alfa, assim como a razão entre os ritmos beta e alfa no córtex frontal e pré-frontal. Para a gravação dos sinais de EEG foi utilizado um dispositivo portátil, com eletrodos especificamente situados nas posições aF3, F3, F4 e aF4, de acordo com o Sistema Internacional 10/20 de posicionamento de eletrodos. Os participantes deste estudo são Bombeiros Militares da 1ª Cia de Vitória-ES. Foram utilizadas três classes de estímulos emocionais positivos, calmos e negativos, através da utilização de imagens pertencentes ao banco de dados IAPS (International Affective Picture System). Os resultados de acurácia obtidos através de um classificador SVM (Support Vector Machine) chegam a 88,24% para classe de estímulos positivos, 84,09% para classe calma e de 92,86% para os estímulos negativos. Deste modo, esta pesquisa apresenta uma combinação de parâmetros que podem ser aferidos com equipamentos de baixo custo, e fornecem condições de diferenciar estímulos estressantes, podendo assim, ser utilizada para auxiliar no treinamento de profissionais da área de urgência e emergência.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The HCI community is actively seeking novel methodologies to gain insight into the user’s experience during interaction with both the application and the content. We propose an emotional recognition engine capable of automatically recognizing a set of human emotional states using psychophysiological measures of the autonomous nervous system, including galvanic skin response, respiration, and heart rate. A novel pattern recognition system, based on discriminant analysis and support vector machine classifiers is trained using movies’ scenes selected to induce emotions ranging from the positive to the negative valence dimension, including happiness, anger, disgust, sadness, and fear. In this paper we introduce an emotion recognition system and evaluate its accuracy by presenting the results of an experiment conducted with three physiologic sensors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ao longo dos tempos tem existido um avanço, nas empresas, dirigido à preocupação com o bemestar dos trabalhadores, adotando por isso medidas preventivas. A formação especializada em Medicina do Trabalho é indispensável para o exercício de atividades de prevenção dos riscos profissionais e de promoção da saúde. A postura corporal pode ser definida como a posição e a orientação global do corpo e membros relativamente uns aos outros. Qualquer desvio na forma da coluna vertebral pode gerar solicitações funcionais prejudiciais que ocasionam um aumento de fadiga no trabalhador e leva ao longo do tempo a lesões graves. Cada vez mais surgem doenças profissionais provocadas pela adoção de más posturas, na realização de tarefas diárias dos trabalhadores. A boa postura corporal é uma tarefa específica que representa uma interação complexa entre a função biomecânica e neuromuscular. No presente plano de dissertação foram estudados diferentes classificadores tendo como objetivo classificar boas e más posturas corporais de trabalhadores em contexto de trabalho. Assim foram estudados diferentes classificadores de machine learnig, redes neuronais artificiais, support vector machine, árvores de decisão, análise discriminante, regressão logística, treebagger e naíve bayes. Para treino de classificadores foi realizada a aquisição tridimensional da postura da espinha a 100 pessoas, passando por uma parametrização e treino de diferentes classificadores para a determinação automática do tipo de postura corporal. O classificador que obteve melhor desempenho foi o Treebagger com uma classificação para True Positive de 93,3% e True Negative de 96,2%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Actualmente tem-se observado um aumento do volume de sinais de fala em diversas aplicações, que reforçam a necessidade de um processamento automático dos ficheiros. No campo do processamento automático destacam-se as aplicações de “diarização de orador”, que permitem catalogar os ficheiros de fala com a identidade de oradores e limites temporais de fala de cada um, através de um processo de segmentação e agrupamento. No contexto de agrupamento, este trabalho visa dar continuidade ao trabalho intitulado “Detecção do Orador”, com o desenvolvimento de um algoritmo de “agrupamento multi-orador” capaz de identificar e agrupar correctamente os oradores, sem conhecimento prévio do número ou da identidade dos oradores presentes no ficheiro de fala. O sistema utiliza os coeficientes “Mel Line Spectrum Frequencies” (MLSF) como característica acústica de fala, uma segmentação de fala baseada na energia e uma estrutura do tipo “Universal Background Model - Gaussian Mixture Model” (UBM-GMM) adaptado com o classificador “Support Vector Machine” (SVM). No trabalho foram analisadas três métricas de discriminação dos modelos SVM e a avaliação dos resultados foi feita através da taxa de erro “Speaker Error Rate” (SER), que quantifica percentualmente o número de segmentos “fala” mal classificados. O algoritmo implementado foi ajustado às características da língua portuguesa através de um corpus com 14 ficheiros de treino e 30 ficheiros de teste. Os ficheiros de treino dos modelos e classificação final, enquanto os ficheiros de foram utilizados para avaliar o desempenho do algoritmo. A interacção com o algoritmo foi dinamizada com a criação de uma interface gráfica que permite receber o ficheiro de teste, processá-lo, listar os resultados ou gerar um vídeo para o utilizador confrontar o sinal de fala com os resultados de classificação.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mestrado em Engenharia Informática

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chronic liver disease (CLD) is most of the time an asymptomatic, progressive, and ultimately potentially fatal disease. In this study, an automatic hierarchical procedure to stage CLD using ultrasound images, laboratory tests, and clinical records are described. The first stage of the proposed method, called clinical based classifier (CBC), discriminates healthy from pathologic conditions. When nonhealthy conditions are detected, the method refines the results in three exclusive pathologies in a hierarchical basis: 1) chronic hepatitis; 2) compensated cirrhosis; and 3) decompensated cirrhosis. The features used as well as the classifiers (Bayes, Parzen, support vector machine, and k-nearest neighbor) are optimally selected for each stage. A large multimodal feature database was specifically built for this study containing 30 chronic hepatitis cases, 34 compensated cirrhosis cases, and 36 decompensated cirrhosis cases, all validated after histopathologic analysis by liver biopsy. The CBC classification scheme outperformed the nonhierachical one against all scheme, achieving an overall accuracy of 98.67% for the normal detector, 87.45% for the chronic hepatitis detector, and 95.71% for the cirrhosis detector.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chronic Liver Disease is a progressive, most of the time asymptomatic, and potentially fatal disease. In this paper, a semi-automatic procedure to stage this disease is proposed based on ultrasound liver images, clinical and laboratorial data. In the core of the algorithm two classifiers are used: a k nearest neighbor and a Support Vector Machine, with different kernels. The classifiers were trained with the proposed multi-modal feature set and the results obtained were compared with the laboratorial and clinical feature set. The results showed that using ultrasound based features, in association with laboratorial and clinical features, improve the classification accuracy. The support vector machine, polynomial kernel, outperformed the others classifiers in every class studied. For the Normal class we achieved 100% accuracy, for the chronic hepatitis with cirrhosis 73.08%, for compensated cirrhosis 59.26% and for decompensated cirrhosis 91.67%.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work the identification and diagnosis of various stages of chronic liver disease is addressed. The classification results of a support vector machine, a decision tree and a k-nearest neighbor classifier are compared. Ultrasound image intensity and textural features are jointly used with clinical and laboratorial data in the staging process. The classifiers training is performed by using a population of 97 patients at six different stages of chronic liver disease and a leave-one-out cross-validation strategy. The best results are obtained using the support vector machine with a radial-basis kernel, with 73.20% of overall accuracy. The good performance of the method is a promising indicator that it can be used, in a non invasive way, to provide reliable information about the chronic liver disease staging.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work liver contour is semi-automatically segmented and quantified in order to help the identification and diagnosis of diffuse liver disease. The features extracted from the liver contour are jointly used with clinical and laboratorial data in the staging process. The classification results of a support vector machine, a Bayesian and a k-nearest neighbor classifier are compared. A population of 88 patients at five different stages of diffuse liver disease and a leave-one-out cross-validation strategy are used in the classification process. The best results are obtained using the k-nearest neighbor classifier, with an overall accuracy of 80.68%. The good performance of the proposed method shows a reliable indicator that can improve the information in the staging of diffuse liver disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trabalho de Projeto para obtenção do grau de Mestre em Engenharia Informática e de Computadores

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introdução Actualmente, as mensagens electrónicas são consideradas um importante meio de comunicação. As mensagens electrónicas – vulgarmente conhecidas como emails – são utilizadas fácil e frequentemente para enviar e receber o mais variado tipo de informação. O seu uso tem diversos fins gerando diariamente um grande número de mensagens e, consequentemente um enorme volume de informação. Este grande volume de informação requer uma constante manipulação das mensagens de forma a manter o conjunto organizado. Tipicamente esta manipulação consiste em organizar as mensagens numa taxonomia. A taxonomia adoptada reflecte os interesses e as preferências particulares do utilizador. Motivação A organização manual de emails é uma actividade morosa e que consome tempo. A optimização deste processo através da implementação de um método automático, tende a melhorar a satisfação do utilizador. Cada vez mais existe a necessidade de encontrar novas soluções para a manipulação de conteúdo digital poupando esforços e custos ao utilizador; esta necessidade, concretamente no âmbito da manipulação de emails, motivou a realização deste trabalho. Hipótese O objectivo principal deste projecto consiste em permitir a organização ad-hoc de emails com um esforço reduzido por parte do utilizador. A metodologia proposta visa organizar os emails num conjunto de categorias, disjuntas, que reflectem as preferências do utilizador. A principal finalidade deste processo é produzir uma organização onde as mensagens sejam classificadas em classes apropriadas requerendo o mínimo número esforço possível por parte do utilizador. Para alcançar os objectivos estipulados, este projecto recorre a técnicas de mineração de texto, em especial categorização automática de texto, e aprendizagem activa. Para reduzir a necessidade de inquirir o utilizador – para etiquetar exemplos de acordo com as categorias desejadas – foi utilizado o algoritmo d-confidence. Processo de organização automática de emails O processo de organizar automaticamente emails é desenvolvido em três fases distintas: indexação, classificação e avaliação. Na primeira fase, fase de indexação, os emails passam por um processo transformativo de limpeza que visa essencialmente gerar uma representação dos emails adequada ao processamento automático. A segunda fase é a fase de classificação. Esta fase recorre ao conjunto de dados resultantes da fase anterior para produzir um modelo de classificação, aplicando-o posteriormente a novos emails. Partindo de uma matriz onde são representados emails, termos e os seus respectivos pesos, e um conjunto de exemplos classificados manualmente, um classificador é gerado a partir de um processo de aprendizagem. O classificador obtido é então aplicado ao conjunto de emails e a classificação de todos os emails é alcançada. O processo de classificação é feito com base num classificador de máquinas de vectores de suporte recorrendo ao algoritmo de aprendizagem activa d-confidence. O algoritmo d-confidence tem como objectivo propor ao utilizador os exemplos mais significativos para etiquetagem. Ao identificar os emails com informação mais relevante para o processo de aprendizagem, diminui-se o número de iterações e consequentemente o esforço exigido por parte dos utilizadores. A terceira e última fase é a fase de avaliação. Nesta fase a performance do processo de classificação e a eficiência do algoritmo d-confidence são avaliadas. O método de avaliação adoptado é o método de validação cruzada denominado 10-fold cross validation. Conclusões O processo de organização automática de emails foi desenvolvido com sucesso, a performance do classificador gerado e do algoritmo d-confidence foi relativamente boa. Em média as categorias apresentam taxas de erro relativamente baixas, a não ser as classes mais genéricas. O esforço exigido pelo utilizador foi reduzido, já que com a utilização do algoritmo d-confidence obteve-se uma taxa de erro próxima do valor final, mesmo com um número de casos etiquetados abaixo daquele que é requerido por um método supervisionado. É importante salientar, que além do processo automático de organização de emails, este projecto foi uma excelente oportunidade para adquirir conhecimento consistente sobre mineração de texto e sobre os processos de classificação automática e recuperação de informação. O estudo de áreas tão interessantes despertou novos interesses que consistem em verdadeiros desafios futuros.