924 resultados para supplied air
Resumo:
STRIPPING is a software application developed for the automatic design of a randomly packing column where the transfer of volatile organic compounds (VOCs) from water to air can be performed and to simulate it’s behaviour in a steady-state. This software completely purges any need of experimental work for the selection of diameter of the column, and allows a choice, a priori, of the most convenient hydraulic regime for this type of operation. It also allows the operator to choose the model used for the calculation of some parameters, namely between the Eckert/Robbins model and the Billet model for estimating the pressure drop of the gaseous phase, and between the Billet and Onda/Djebbar’s models for the mass transfer. Illustrations of the graphical interface offered are presented.
Resumo:
This work deals with the numerical simulation of air stripping process for the pre-treatment of groundwater used in human consumption. The model established in steady state presents an exponential solution that is used, together with the Tau Method, to get a spectral approach of the solution of the system of partial differential equations associated to the model in transient state.
Resumo:
Volatile organic compounds are a common source of groundwater contamination that can be easily removed by air stripping in columns with random packing and using a counter-current flow between the phases. This work proposes a new methodology for column design for any type of packing and contaminant which avoids the necessity of an arbitrary chosen diameter. It also avoids the employment of the usual graphical Eckert correlations for pressure drop. The hydraulic features are previously chosen as a project criterion. The design procedure was translated into a convenient algorithm in C++ language. A column was built in order to test the design, the theoretical steady-state and dynamic behaviour. The experiments were conducted using a solution of chloroform in distilled water. The results allowed for a correction in the theoretical global mass transfer coefficient previously estimated by the Onda correlations, which depend on several parameters that are not easy to control in experiments. For best describe the column behaviour in stationary and dynamic conditions, an original mathematical model was developed. It consists in a system of two partial non linear differential equations (distributed parameters). Nevertheless, when flows are steady, the system became linear, although there is not an evident solution in analytical terms. In steady state the resulting ODE can be solved by analytical methods, and in dynamic state the discretization of the PDE by finite differences allows for the overcoming of this difficulty. To estimate the contaminant concentrations in both phases in the column, a numerical algorithm was used. The high number of resulting algebraic equations and the impossibility of generating a recursive procedure did not allow the construction of a generalized programme. But an iterative procedure developed in an electronic worksheet allowed for the simulation. The solution is stable only for similar discretizations values. If different values for time/space discretization parameters are used, the solution easily becomes unstable. The system dynamic behaviour was simulated for the common liquid phase perturbations: step, impulse, rectangular pulse and sinusoidal. The final results do not configure strange or non-predictable behaviours.
Resumo:
Hydraulic systems are dynamically susceptible in the presence of entrapped air pockets, leading to amplified transient reactions. In order to model the dynamic action of an entrapped air pocket in a confined system, a heuristic mathematical formulation based on a conceptual analogy to a mechanical spring-damper system is proposed. The formulation is based on the polytropic relationship of an ideal gas and includes an additional term, which encompasses the combined damping effects associated with the thermodynamic deviations from the theoretical transformation, as well as those arising from the transient vorticity developed in both fluid domains (air and water). These effects represent the key factors that account for flow energy dissipation and pressure damping. Model validation was completed via numerical simulation of experimental measurements.
Resumo:
The design of magnetic cores can be carried out by taking into account the optimization of different parameters in accordance with the application requirements. Considering the specifications of the fast field cycling nuclear magnetic resonance (FFC-NMR) technique, the magnetic flux density distribution, at the sample insertion volume, is one of the core parameters that needs to be evaluated. Recently, it has been shown that the FFC-NMR magnets can be built on the basis of solenoid coils with ferromagnetic cores. Since this type of apparatus requires magnets with high magnetic flux density uniformity, a new type of magnet using a ferromagnetic core, copper coils, and superconducting blocks was designed with improved magnetic flux density distribution. In this paper, the designing aspects of the magnet are described and discussed with emphasis on the improvement of the magnetic flux density homogeneity (Delta B/B-0) in the air gap. The magnetic flux density distribution is analyzed based on 3-D simulations and NMR experimental results.
Resumo:
Trabalho de Projecto de Mestrado em Novos Media e Práticas Web
Resumo:
The ventilation efficiency concept is an attempt to quantify a parameter that can easily distinguish the different options for air diffusion in the building spaces. Thirteen strategies of air diffusion were measured in a test chamber through the application of the tracer gas method, with the objective to validate the calculation by Computational fluid dynamics (CFD). Were compared the Air Change Efficiency (ACE) and the Contaminant Removal Effectiveness (CRE), the two indicators most internationally accepted. The main results from this work shows that the values of the numerical simulations are in good agreement with experimental measurements and also, that the solutions to be adopted for maximizing the ventilation efficiency should be the schemes that operate with low speeds of supply air and small differences between supply air temperature and the room temperature.
Resumo:
Considering tobacco smoke as one of the most health-relevant indoor sources, the aim of this work was to further understand its negative impacts on human health. The specific objectives of this work were to evaluate the levels of particulate-bound PAHs in smoking and non-smoking homes and to assess the risks associated with inhalation exposure to these compounds. The developed work concerned the application of the toxicity equivalency factors approach (including the estimation of the lifetime lung cancer risks, WHO) and the methodology established by USEPA (considering three different age categories) to 18 PAHs detected in inhalable (PM10) and fine (PM2.5) particles at two homes. The total concentrations of 18 PAHs (ΣPAHs) was 17.1 and 16.6 ng m−3 in PM10 and PM2.5 at smoking home and 7.60 and 7.16 ng m−3 in PM10 and PM2.5 at non-smoking one. Compounds with five and six rings composed the majority of the particulate PAHs content (i.e., 73 and 78 % of ΣPAHs at the smoking and non-smoking home, respectively). Target carcinogenic risks exceeded USEPA health-based guideline at smoking home for 2 different age categories. Estimated values of lifetime lung cancer risks largely exceeded (68–200 times) the health-based guideline levels at both homes thus demonstrating that long-term exposure to PAHs at the respective levels would eventually cause risk of developing cancer. The high determined values of cancer risks in the absence of smoking were probably caused by contribution of PAHs from outdoor sources.
Resumo:
Due to their detrimental effects on human health, the scientific interest in ultrafine particles (UFP) has been increasing, but available information is far from comprehensive. Compared to the remaining population, the elderly are potentially highly susceptible to the effects of outdoor air pollution. Thus, this study aimed to (1) determine the levels of outdoor pollutants in an urban area with emphasis on UFP concentrations and (2) estimate the respective dose rates of exposure for elderly populations. UFP were continuously measured over 3 weeks at 3 sites in north Portugal: 2 urban (U1 and U2) and 1 rural used as reference (R1). Meteorological parameters and outdoor pollutants including particulate matter (PM10), ozone (O3), nitric oxide (NO), and nitrogen dioxide (NO2) were also measured. The dose rates of inhalation exposure to UFP were estimated for three different elderly age categories: 64–70, 71–80, and >81 years. Over the sampling period levels of PM10, O3 and NO2 were in compliance with European legislation. Mean UFP were 1.7 × 104 and 1.2 × 104 particles/cm3 at U1 and U2, respectively, whereas at rural site levels were 20–70% lower (mean of 1 ×104 particles/cm3). Vehicular traffic and local emissions were the predominant identified sources of UFP at urban sites. In addition, results of correlation analysis showed that UFP were meteorologically dependent. Exposure dose rates were 1.2- to 1.4-fold higher at urban than reference sites with the highest levels noted for adults at 71–80 yr, attributed mainly to higher inhalation rates.
Resumo:
We have calculated the equilibrium shape of the axially symmetric meniscus along which a spherical bubble contacts a flat liquid surface by analytically integrating the Young-Laplace equation in the presence of gravity, in the limit of large Bond numbers. This method has the advantage that it provides semianalytical expressions for key geometrical properties of the bubble in terms of the Bond number. Results are in good overall agreement with experimental data and are consistent with fully numerical (Surface Evolver) calculations. In particular, we are able to describe how the bubble shape changes from hemispherical, with a flat, shallow bottom, to lenticular, with a deeper, curved bottom, as the Bond number is decreased.
Consumption Management of Air Conditioning Devices for the Participation in Demand Response Programs
Resumo:
Demand Response has been taking over the years an extreme importance. There’s a lot of demand response programs, one of them proposed in this paper, using air conditioners that could increase the power quality and decrease the spent money in many ways like: infrastructures and customers energy bill reduction. This paper proposes a method and a study on how air conditioners could integrate demand response programs. The proposed method has been modelled as an energy resources management optimization problem. This paper presents two case studies, the first one with all costumers participating and second one with some of costumers. The results obtained for both case studies have been analyzed.
Resumo:
A biomassa é uma das fontes de energia renovável com maior potencial em Portugal, sendo a capacidade de produção de pellets de biomassa atualmente instalada superior a 1 milhão de toneladas/ano. Contudo, a maioria desta produção destina-se à exportação ou à utilização em centrais térmicas a biomassa, cujo crescimento tem sido significativo nos últimos anos, prevendo-se que a capacidade instalada em 2020 seja de aproximadamente 250 MW. O mercado português de caldeiras a pellets é bastante diversificado. O estudo que realizamos permitiu concluir que cerca de 90% das caldeiras existentes no mercado português têm potências inferiores a 60 kW, possuindo na sua maioria grelha fixa (81%), com sistema de ignição eléctrica (92%) e alimentação superior do biocombustível sólido (94%). O objetivo do presente trabalho foi o desenvolvimento de um modelo para simulação de uma caldeira a pellets de biomassa, que para além de permitir otimizar o projeto e operação deste tipo de equipamento, permitisse avaliar as inovações tecnológicas nesta área. Para tal recorreu-se o BiomassGasificationFoam, um código recentemente publicado, e escrito para utilização com o OpenFOAM, uma ferramenta computacional de acesso livre, que permite a simulação dos processos de pirólise, gasificação e combustão de biomassa. Este código, que foi inicialmente desenvolvido para descrever o processo de gasificação na análise termogravimétrica de biomassa, foi por nós adaptado para considerar as reações de combustão em fase gasosa dos gases libertados durante a pirólise da biomassa (recorrendo para tal ao solver reactingFoam), e ter a possibilidade de realizar a ignição da biomassa, o que foi conseguido através de uma adaptação do código de ignição do XiFoam. O esquema de ignição da biomassa não se revelou adequado, pois verificou-se que a combustão parava sempre que a ignição era inativada, independentemente do tempo que ela estivesse ativa. Como alternativa, usaram-se outros dois esquemas para a combustão da biomassa: uma corrente de ar quente, e uma resistência de aquecimento. Ambos os esquemas funcionaram, mas nunca foi possível fazer com que a combustão fosse autossustentável. A análise dos resultados obtidos permitiu concluir que a extensão das reações de pirólise e de gasificação, que são ambas endotérmicas, é muito pequena, pelo que a quantidade de gases libertados é igualmente muito pequena, não sendo suficiente para libertar a energia necessária à combustão completa da biomassa de uma maneira sustentável. Para tentar ultrapassar esta dificuldade foram testadas várias alternativas, , que incluíram o uso de diferentes composições de biomassa, diferentes cinéticas, calores de reação, parâmetros de transferência de calor, velocidades do ar de alimentação, esquemas de resolução numérica do sistema de equações diferenciais, e diferentes parâmetros dos esquemas de resolução utilizados. Todas estas tentativas se revelaram infrutíferas. Este estudo permitiu concluir que o solver BiomassGasificationFoam, que foi desenvolvido para descrever o processo de gasificação de biomassa em meio inerte, e em que a biomassa é aquecida através de calor fornecido pelas paredes do reator, aparentemente não é adequado à descrição do processo de combustão da biomassa, em que a combustão deve ser autossustentável, e em que as reações de combustão em fase gasosa são importantes. Assim, é necessário um estudo mais aprofundado que permita adaptar este código à simulação do processo de combustão de sólidos porosos em leito fixo.
Resumo:
Because of the scientific evidence showing that arsenic (As), cadmium (Cd), and nickel (Ni) are human genotoxic carcinogens, the European Union (EU) recently set target values for metal concentration in ambient air (As: 6 ng/m3, Cd: 5 ng/m3, Ni: 20 ng/m3). The aim of our study was to determine the concentration levels of these trace elements in Porto Metropolitan Area (PMA) in order to assess whether compliance was occurring with these new EU air quality standards. Fine (PM2.5) and inhalable (PM10) air particles were collected from October 2011 to July 2012 at two different (urban and suburban) locations in PMA. Samples were analyzed for trace elements content by inductively coupled plasma–mass spectrometry (ICP-MS). The study focused on determination of differences in trace elements concentration between the two sites, and between PM2.5 and PM10, in order to gather information regarding emission sources. Except for chromium (Cr), the concentration of all trace elements was higher at the urban site. However, results for As, Cd, Ni, and lead (Pb) were well below the EU limit/target values (As: 1.49 ± 0.71 ng/m3; Cd: 1.67 ± 0.92 ng/m3; Ni: 3.43 ± 3.23 ng/m3; Pb: 17.1 ± 10.1 ng/m3) in the worst-case scenario. Arsenic, Cd, Ni, Pb, antimony (Sb), selenium (Se), vanadium (V), and zinc (Zn) were predominantly associated to PM2.5, indicating that anthropogenic sources such as industry and road traffic are the main source of these elements. High enrichment factors (EF > 100) were obtained for As, Cd, Pb, Sb, Se, and Zn, further confirming their anthropogenic origin.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia do Ambiente Perfil Gestão de Sistemas Ambientais