322 resultados para superabsorbent hydrogels


Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been considerable interest in developing shape-changing soft materials for potential applications in drug delivery, microfluidics and biosensing. These shape- changing materials are inspired by the morphological changes exhibited by plants in nature, such as the Venus flytrap. One specific class of shape-change is that from a flat sheet to a folded structure (e.g., a tube). Such “self-folding” materials are usually composed of polymer hydrogels, and these typically fold in response to external stimuli such as pH and temperature. In order to develop these hydrogels for the previously described applications, it is necessary to expand the range of triggers. The focus of this dissertation is the advancement of shape-changing polymer hydrogels that are sensitive to uncommon cues such as specific biomolecules (enzymes), the substrates for such enzymes, or specific multivalent cations. First, we describe a hybrid gel that responds to the presence of low concentrations of a class of enzymes known as matrix metalloproteinases (MMPs). The hybrid gel was created by utilizing photolithographic techniques to combine two or more gels with distinct chemical composition into the same material. Certain portions of the hybrid gel are composed of a biopolymer derivative with crosslinkable groups. The hybrid gel is flat in water; however, in the presence of MMPs, the regions containing the biopolymer are degraded and the flat sheet folds to form a 3D structure. We demonstrate that hydrogels with different patterns can transform into different 3D structures such as tubes, helices and pancakes. Furthermore, this shape change can be made to occur at physiological concentrations of enzymes. Next, we report a gel with two layers that undergoes a shape change in the presence of glucose. The enzyme glucose oxidase (GOx) is immobilized in one of the layers. GOx catalyzes the conversion of glucose to gluconic acid. The production of gluconic acid decreases the local pH. The decrease in local pH causes one of the layers to swell. As a result, the flat sheet folds to form a tube. The tube unfolds to form a flat sheet when it is transferred to a solution with no glucose present. Therefore, this biomolecule- triggered shape transformation is reversible, meaning the glucose sensing gel is reusable. Furthermore, this shape change only occurs in the presence of glucose and it does not occur in the presence of other small sugars such as fructose. In our final study, we report the shape change of a gel with two layers in the presence of multivalent ions such as Ca2+ and Sr2+. The gel consists of a passive layer and an active layer. The passive layer is composed of dimethylyacrylamide (DMAA), which does not interact with multivalent ions. The active layer consists of DMAA and the biopolymer alginate. In the presence of Ca2+ ions, the alginate chains crosslink and the active layer shrinks. As a result, the gel converts from a flat sheet to a folded tube. What is particularly unusual is the direction of folding. In most cases, when flat rectangular gels fold, they do so about their short-side. However, our gels typically fold about their long-side. We hypothesize that non-homogeneous swelling determines the folding axis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Viscosupplements, used for treating joint and cartilage diseases, restore the rheological properties of synovial fluid, regulate joint homeostasis and act as scaffolds for cell growth and tissue regeneration. Most viscosupplements are hydrogels composed of hyaluronic acid (HA) microparticles suspended in fluid HA. These microparticles are crosslinked with chemicals to assure their stability against enzyme degradation and to prolong the action of the viscosupplement. However, the crosslinking also modifies the mechanical, swelling and rheological properties of the HA microparticle hydrogels, with consequences on the effectiveness of the application. The aim of this study is to correlate the crosslinking degree (CD) with these properties to achieve modulation of HA/DVS microparticles through CD control. Because divinyl sulfone (DVS) is the usual crosslinker of HA in viscosupplements, we examined the effects of CD by preparing HA microparticles at 1:1, 2:1, 3:1, and 5:1 HA/DVS mass ratios. The CD was calculated from inductively coupled plasma spectrometry data. HA microparticles were previously sized to a mean diameter of 87.5 µm. Higher CD increased the viscoelasticity and the extrusion force and reduced the swelling of the HA microparticle hydrogels, which also showed Newtonian pseudoplastic behavior and were classified as covalent weak. The hydrogels were not cytotoxic to fibroblasts according to an MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay. © 2014 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2014.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermosensitive hydrogels were synthesized using alginate-Ca2+ in association with a thermosensitive polymer, such as PNIPAAm. The mechanical properties of the hydrogels were determined measuring the maximum tension of deformation. With the increase of the temperature by 25 to 40 ºC above the LCST the chains of PNIPAAm collapsed, dragging the alginate net and diminishing the size of the pores. The decrease in the size of the pores of the hydrogel was followed by an increase in the mechanicals resistance of the material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Curvas termogravimétricas com diferentes razões de aquecimento foram utilizadas para a determinação de parâmetros cinéticos seguindo o método de Flynn-Wall. Para isso, foi utilizado um hidrogel preparado a partir da mistura de dois polissacarídeos, quitosana/xantana (QX) e outro, contendo além destes, colágeno (QXC). Os resultados mostraram que o valor de energia de ativação para o hidrogel QX foi de 3,44 kJ.mol-1, enquanto que para o QXC foi de 14,84 kJ.mol-1, sugerindo que a água presente no hidrogel contendo colágeno está mais fortemente ligada aos biopolímeros. Isto pode ter ocorrido devido à presença de grupos carboxílicos na estrutura colagênica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hydrogels micro, sub-micro and nanoparticles are of great interest for drug encapsulation and delivery or as embolotherapic agents. In this work it is described the preparation of nano and sub-microparticles of pre-formed, high molecular weight and monomer free poly(N-vinyl-2-pyrrolidone) encapsulated inside the core of lecithin vesicles. The hydrogel particles are formed with a very narrow diameter distribution, of about 800 nm, and a moderate swelling ratio, of approximately 10.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Blends formed by electrochemical polymerization of polypyrrole (PPy) into polyacrylamide (PAAm) hydrogels were used as devices for controlled drug release. The influence of several parameters in the synthesis, such as type of hydrogel matrix and polymerization conditions was studied by using a fractional factorial design. The final goal was to obtain an adequate device for use in controlled release tests, based on electrochemical potential control. For controlled release tests, Safranin was used as model drug and release curves (amount of drug vs. time) have shown that these blends are promising materials for this use. The optimized blends obtained were characterized by cyclic voltammetry and Raman spectroscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nuclear magnetic resonance (NMR) spin-spin relaxation time (T-2) is related to the radiation-dependent concentration of polymer formed in polymer gel dosimeters manufactured from monomers in an aqueous gelatin matrix. Changes in T-2 with time post-irradiation have been reported in the literature but their nature is not fully understood. We investigated those changes with time after irradiation using FT-Raman spectroscopy and the precise determination of T-2 at high magnetic field in a polymer gel dosimeter, A model of fast exchange of magnetization taking into account ongoing gelation and strengthening of the gelatin matrix as well as the polymerization of the monomers with time is presented. Published data on the changes of T-2 in gelatin gels as a function of post-manufacture time are used and fitted closely by the model presented. The same set of parameters characterizing the variations of T-2 in gelatin gels and the increasing concentration of polymer determined from Fr-Raman spectroscopy are used successfully in the modelling of irradiated polymer gel dosimeters. Minimal variations in T-2 in an irradiated PAG dosimeter are observed after 13 h.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new method for the evaluation of radiotherapy 3D polymer gel dosimeters has been developed using ultrasound to assess the significant structural changes that occur following irradiation of the dosimeters. The ultrasonic parameters of acoustic speed of propagation, attenuation and transmitted signal intensity were measured as a function of absorbed radiation dose. The dose sensitivities for each parameter were determined as 1.8 x 10(-4) s m(-1) Gy(-1), 3.9 dB m(-1) Gy(-1) and 3.2 V-1 Gy(-1) respectively. All parameters displayed a strong variation with absorbed dose that continued beyond absorbed doses of 15 Gy. The ultrasonic measurements demonstrated a significantly larger dynamic range in dose response curves than that achieved with previously published magnetic resonance imaging (MRI) dose response data. It is concluded that ultrasound shows great potential as a technique for the evaluation of polymer gel dosimeters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Semi-interpenetrating networks (Semi-IPNs) with different compositions were prepared from poly(dimethylsiloxane) (PDMS), tetraethylorthosilicate (TEOS), and poly (vinyl alcohol) (PVA) by the sol-gel process in this study. The characterization of the PDMS/PVA semi-IPN was carried out using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and swelling measurements. The presence of PVA domains dispersed in the PDMS network disrupted the network and allowed PDMS to crystallize, as observed by the crystallization and melting peaks in the DSC analyses. Because of the presence of hydrophilic (-OH) and hydrophobic (Si-(CH(3))(2)) domains, there was an appropriate hydrophylic/hydrophobic balance in the semi-IPNs prepared, which led to a maximum equilibrium water content of similar to 14 wt % without a loss in the ability to swell less polar solvents. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 115: 158-166, 2010

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The diffusion of water into a series of hydroxyethyl methacrylate, HEMA, copolymers with tetrahydrofurfuryl methacrylate, THFMA, has been studied over a range of copolymer compositions using NMR imaging analyses. For polyHEMA the diffusion was found to be consistent with a Fickian model. The mass diffusion coefficient of water in polyHEMA at 37 degreesC was determined from the profiles of the diffusion front to be 1.5 x 10(-11) m(2) s(-1), which is less than the value based upon mass uptake, 2.0 x 10(-11) m(2) s(-1). The profiles of the water diffusion front obtained from the NMR images showed that stress was induced at the interface between the rubbery and glassy regions which led to formation of small cracks in this region of the glassy matrix of polyHEMA and its copolymers with mole fractions of HEMA greater than 0.6. Water was shown to be able to enter these cracks forming water pools. For copolymers of HEMA and THFMA with mole fractions of HEMA less than 0.6 the absence of cracks was attributed to the ability of the THFMA sequences to undergo stress relaxation by creep.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The formation of radicals in poly(vinyl alcohol), PVA, powder irradiated at 77 K by gamma -rays and the transformations of these radicals during photolysis with visible wavelengths and on thermal annealing have been studied. After irradiation a four-line ESR spectrum was observed. It was assigned to a triplet of the C-alpha-radical (38%), with a splitting of 3.27 mT, superimposed on a doublet (62%) with a splitting of 2.7 mT. The doublet appears to be composed of two radicals, one of which is photo-bleachable (58%) and the other which is not photo-bleachable (42%). This suggests that the latter radical is a neutral radical. The photo-bleachable component of the doublet has been assigned to a carbonyl anion radical. but the second doublet due to a neutral radical is unassigned. The total G-value for formation of radicals at 77 K was found to be 2.41 +/- 0.03. Upon illumination with visible light, the anion radicals were removed and the doublet components or the spectrum diminished in intensity, while the three-line spectrum of the C-alpha-radical became more clearly visible. This transition was due to the photo-detachment of electrons from traps which were proposed to be located on carbonyl groups in the polymer resulting from incomplete hydrolysis of the vinyl acetate. The photo-decay of the anion radicals could be satisfactorily described by a two-stage process. The first stage comprised the decay of approximately 80% of the anion radicals present, while the second stage was associated with the decay of the remaining 20%. Subsequent thermal annealing of a photolysed sample to 290 K led to a change in the shape of the spectrum to form a more clearly defined triplet, As the doublet of the neutral radical decays on thermal annealing between 150 and 250K, the C-alpha-radical is formed. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ultrasonic absorption in polymer gel dosimeters was investigated. An ultrasonic interferometer was used to study the frequency (f) dependence of the absorption coefficient (alpha) in a polyacrylamide gel dosimeter (PAG) in the frequency range 5-20 MHz. The frequency dependence of ultrasonic absorption deviated from that of an ideal viscous fluid. The presence of relaxation mechanisms was evidenced by the frequency dependence of alpha/f(2) and the dispersion in ultrasonic velocity. It was concluded that absorption in polymer gel dosimeters is due to a number of relaxation processes which may include polymer-solvent interactions as well as relaxation due to motion of polymer side groups. The dependence of ultrasonic absorption on absorbed dose and formulation was also investigated in polymer gel dosimeters as a function of pH and chemical composition. Changes in dosimeter pH and chemical composition resulted in a variation in ultrasonic dose response curves. The observed dependence on pH was considered to be due to pH induced modifications in the radiation yield while changes in chemical composition resulted in differences in polymerisation kinetics. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(2-hydroxyethyl methacrylate) and copolymers of 2-hydroxyethyl methacrylate (HEMA) and 1-vinyl-2-pyrrolidone (VP) in the form of cylindrical samples (approximate to8mm x 20mm) have been prepared and the sorption of water into these cylinders has been studied by the mass-uptake methods and by magnetic-resonance imaging. The equilibrium water contents for the cylinders were found to vary systematically with the copolymer composition. Diffusion of water into the cylinders was found to follow Fickian behaviour for cylinders with high HEMA contents, with the diffusion coefficients obtained from mass-uptake studies dependent on the copolymer composition, varying from 1.7 x 10(-11) m(2) s(-1) for poly(HEMA) to 2.0 x 10(-11) m(2) s(-1) for poly(HEMA-co-VP) with a composition of 1:1. However, NMR-imaging studies showed that, while the profiles of the water diffusion fronts for cylinders with high HEMA contents were Fickian, that for the 1:1 copolymer was not and indicated that the mechanism was Case III. The polymers which were rich in VP were characterized by a water-sorption process which follows Case-III behaviour. (C) 2003 Society of Chemical Industry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação apresentada para a obtenção do grau de Doutor em Engenharia Química, especialidade Engenharia da Reacção Química, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O conforto é uma necessidade para a maioria das pessoas. A busca de vestuário que se adapte às condições ambientais tornou-se essencial. Queremos materiais que nos mantenham quentes ou frescos, em condições de frio ou calor, e sejam capazes de nos manter secos se chover, ou se transpirarmos, devido a actividade intensa, ou simplesmente porque está quente. O objectivo principal deste trabalho era desenvolver uma estrutura multicamada respirável, para posterior aplicação num sapato perfurado, tornando-o respirável e impermeável. São já aplicados em peças de roupa e calçado, materiais que permitem essa gestão de calor e humidade – as membranas. Neste trabalho, foram apresentadas algumas membranas, de fabricantes e materiais diferentes, que foram testadas de modo a obter valores para a transmissão de vapor de água e classificá-las quanto à sua respirabilidade, relativamente a uma membrana de referência. Foram feitos testes com as membranas isoladas, laminadas e com sobreposição de duas membranas laminadas. Verificou-se que a laminagem não diminuía, substancialmente, a respirabilidade das membranas. Já a sobreposição de membranas, demonstrou diminuir em 35 % a respirabilidade das membranas. A membrana com melhor desempenho é constituída por um polímero de base éter e blocos de amida (PEBA). Ainda pouco aplicado em vestuário e calçado, mas com algum potencial, são os não-tecidos impregnados com polímeros super absorventes (SAP’s). Estes podem absorver até 500 vezes o seu peso em água, dependendo da quantidade de SAP’s com que o não tecido é impregnado e da aplicação final. Esta capacidade de adsorção seria uma mais-valia, em condições de chuva intensa, mas por outro lado, se atingir a saturação, não permite a entrada ou saída de ar, o que poderia levar a desconforto no utilizador. Por fim, foi utilizado um manequim térmico (pé), onde se testaram diferentes calçados, verificando-se que só é possível perder calor e vapor de água pela sola do sapato se esta se encontrar perfurada e utilizar um sistema respirável. Futuramente, pretende-se aplicar uma outra camada de não-tecido, na outra face das membranas já testadas, de modo a criar um sistema de 3 camadas, e testar a sua respirabilidade. Sugere-se, também, criar uma estrutura sólida e arejada para utilizar os não-tecidos impregnados em SAPs. Posteriormente, deve-se aplicar estas estruturas num sapato com a sola perfurada e testá-las no manequim térmico.