917 resultados para subchondral bone osteoblasts


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: The purpose of this research was to evaluate the histological changes of the periodontal ligament and alveolar bone during dental movement in diabetic rats subjected to low level laser therapy (LLLT).Methods: The movement of the upper molar was performed in 60 male Wistar rats divided into four groups (n = 15): CTR (control), DBT (diabetic), CTR/LT (irradiated control) and DBT/LT (irradiated diabetic). Diabetes was induced with alloxan (150 mg/kg, i.p.). LLLT was applied with GaAlAs laser at 780 nm (35 J/cm(2)). After 7, 13 and 19 days, the periodontal ligament and alveolar bone were histologically analyzed.Results: The mean of osteoblasts (p < 0.01) and blood vessels (p < 0.05) were significantly decreased in DBT compared with CTR at 7 days, whereas the mean of osteoclasts was lower at 7 (p < 0.001) and 13 days (p < 0.05). In DBT/LT, only the mean of osteoclasts was lower than in CTR (p < 0.05) at 7 days, but no difference was observed at 13 and 19 days (p > 0.05). The collagenization of the periodontal ligament was impaired in DBT, whereas DBT/LLT showed density/disposition of the collagen fibers similar to those observed in CTR.Conclusions: LLLT improved the periodontal ligament and alveolar bone remodeling activity in diabetic rats during dental movement. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Moderate and controlled loading environments support or enhance osteogenesis, and, consequently, a high degree of bone-to-implant contact can be acquired. This is because when osteoprogenitor cells are exposed to limited physical deformation, their differentiation into osteoblasts is enhanced. Then, some range of microstrain is considered advantageous for bone ingrowth and osseointegration. The primary stability has been considered one of the main clinical means of controlling micromotion between the implant and the forming interfacial tissue, which helps to establish the proper mechanical environment for osteogenesis. Based on the biological aspects of immediate loading (IL), the objective of this study is to present a clinical case of maxillary arch rehabilitation using immediate loading with implant-supported fixed restoration after bone graft. Ten dental implants were placed in the maxilla 6 months after the autogenous bone graft, removed from the mandible (bilateral oblique line and chin), followed by the installation of an immediate-load fixed cross-arch implant-supported restoration because primary stability was reached for 8 implants. In addition, instructions about masticatory function and how it is related to interfacial micromotion were addressed and emphasized to the patient. The reasons for the IL were further avoidance of an interim healing phase, a potential reduction in the number of clinical interventions for the patient, and aesthetic reasons. After monitoring the rehabilitation for 8 years, the authors can conclude that maxillary IL can be performed followed by a well-established treatment planning based on computed tomography, providing immediate esthetics and function to the patient even when autogenous bone graft was previously performed in the maxilla.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies have suggested that tacrolimus monotherapy is a beneficial therapeutic alternative for the normalization of cyclosporin- induced bone loss in animal models and humans. The mechanism accounting for this action is unclear at present. In the present study, we attempted to determine the effect of tacrolimus monotherapy on alveolar bone using histological, histomorphometrical and transmission electron microscopy (TEM).Groups of rats (n= 10 each) were treated with either tacrolimus (1mg/ kg/ day, s.c.) or drug vehicle for 60 days. Fragments containing maxillary molars were processed for light microscopy to investigate the alveolar bone volume, trabecular separation, number of osteoclasts and osteoblasts, and transmission electron microscopy to investigate their ultrastructural basic phenotype.Treatment with tacrolimus monotherapy during 60 days may induce increases in alveolar bone volume (BV/ TV,%; P < 0.05) and a non- significant decrease in trabecular separation (Tb. Sp, mm; P > 0.05), represented by a decrease in osteoclast number (N. Oc/ BS; P < 0.05) and maintenance of osteoblast number (N. Ob/ BS; P > 0.05). Osteoblasts were often observed as a continuous layer of active cells on the bone surface. Osteoclasts appeared to be detached from the resorbed bone surface, which was often filled by active osteoblasts and collagen- rich matrix. Moreover, osteoclasts in the treated group were frequently observed as inactive cells (without ruffled border, clear zone and detached from the bone surface).Within the limits of the present study, we conclude that tacrolimus leads to an increase in alveolar bone formation, which probably exerts action on osteoclasts. Tacrolimus could, therefore, play a crucial role in the control of both early osteoclast differentiations from precursors, as well as in functional activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Resident, non-immune cells express various pattern-recognition receptors and produce inflammatory cytokines in response to microbial antigens, during the innate immune response. Alveolar bone resorption is the hallmark of destructive periodontitis and it is caused by the host response to bacteria and their mediators present on the biofilm. The balance between the expression levels of receptor activator of nuclear factorkappa B ligand (RANKL) and osteoprotegerin (OPG) is pivotal for osteoclast differentiation and activity and has been implicated in the progression of bone loss in periodontitis. To assess the contribution of resident cells to the bone resorption mediated by innate immune signaling, we stimulated fibroblasts and osteoblastic cells with LPS from. Escherichia coli (TLR4 agonist), Porphyromonas gingivalis (TLR2 and -4 agonist), and interleukin-1 beta (as a control for cytokine signaling through Toll/IL-1receptor domain) in time-response experiments. Expression of RANKL and OPG mRNA was studied by RT-PCR, whereas the production of RANKL protein and the activation of p38 MAPK and NF-kB signaling pathways were analyzed by western blot. We used biochemical inhibitors to assess the relative contribution of p38 MAPK and NF-kB signaling to the expression of RANKL and OPG induced by TLR2, -4 and IL1β in these cells. Both p38 MAPK and NFkB pathways were activated by these stimuli in fibroblasts and osteoblasts, but the kinetics of this activation varied in each cell type and with the nature of the stimulation. E. coli LPS was a stronger inducer of RANKL mRNA in fibroblasts, whereas LPS from P. gingivalis downregulated RANKL mRNA in periodontal ligament cells but increased its expression in osteoblasts. IL-1β induced RANKL in both cell types and without a marked effect on OPG expression. p38 MAPK was more relevant than NF-kB for the expression of RANKL and OPG in these cell types.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: This report highlights phytoconstituents present in Cissus quadrangularis (CQ) extract and examines biphasic (proliferative and anti-proliferative) effects of its extract on bone cell proliferation, differentiation, mineralization, ROS generation, cell cycle progression and Runx2 gene expression in primary rat osteoblasts. Materials and methods: Phytoconstituents were identified using gas chromatography-mass spectroscopy (GC-MS). Osteoblasts were exposed to different concentrations (10-100g/ml) of CQ extract and cell proliferation and cell differentiation were investigated at different periods of time. Subsequently, intracellular ROS intensity, apoptosis and matrix mineralization of osteoblasts were evaluated. We performed flow cytometry for DNA content and real-time PCR for Runx2 gene expression analysis.Results: CQ extract's approximately 40 bioactive compounds of fatty acids, hydrocarbons, vitamins and steroidal derivatives were identified. Osteoblasts exposed to varying concentrations of extract exhibited biphasic variation in cell proliferation and differentiation as a function of dose and time. Moreover, lower concentrations (10-50g/ml) of extract slightly reduced ROS intensity, although they enhanced matrix mineralization, DNA content in S phase of the cell cycle, and levels of Runx2 expression. However, higher concentrations (75-100g/ml) considerably induced the ROS intensity and nuclear condensation in osteoblasts, while it reduced mineralization level, proportion of cells in S phase and Runx2 level of the osteogenic gene.Conclusions: These findings suggest that CQ extract revealed concentration-dependent biphasic effects, which would contribute notably to future assessment of pre-clinical efficacy and safety studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this paper was to evaluate the expression of RANK protein during bone-healing process around machined surface implants. Twenty male Wistar rats, 90 days old, after having had a 2 mm diameter and 6 mm long implant inserted in their right tibias, were evaluated at 7, 14, 21, and 42 days after healing. After obtaining the histological samples, slides were subjected to RANK immunostaining reaction. Results were quantitatively evaluated. Results. Immunolabeling analysis showed expressions of RANK in osteoclast and osteoblast lineage cells. The statistical analysis showed an increase in the expression of RANK in osteoblasts at 7 postoperative days and a gradual decrease during the chronology of the healing process demonstrated by mild cellular activity in the final stage (P < .05). Conclusion. RANK immunolabeling was observed especially in osteoclast and osteoblast cells in primary bone during the initial periods of bone-healing/implant interface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We tested the hypothesis that the osteoblast differentiation status of bone marrow stem cells (BMSCs) combined with a three-dimensional (3D) structure modulates bone formation when autogenously implanted. Rat BMSCs were aspirated, expanded, and seeded into a 3D composite of poly(lactide-co-glycolide) and calcium phosphate (PLGA/CaP) to produce a hybrid biomaterial. Calvarial defects were implanted with (1) scaffold without cells (SC/NC), (2) scaffold and BMSCs (SC + BMSC), (3) scaffold and osteoblasts differentiated for 7 days (SC + OB7), and (4) for 14 days (SC + OB14). After 4 weeks, there was more bone formation in groups combining scaffold and cells, SC + BMSC and SC + OB7. A nonsignificant higher amount of bone formation was observed on SC + OB14 compared with SC/NC. Additionally, more blood vessels were counted within all hybrid biomaterials, without differences among them, than into SC/NC. These findings provide evidences that the cell differentiation status affects in vivo bone formation in autogenously implanted cell-based constructs. Undifferentiated BMSCs or osteoblasts in early stage of differentiation combined with PLGA/CaP scaffold favored bone formation compared with plain scaffold and that one associated with more mature osteoblasts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A common subject in bone tissue engineering is the need for porous scaffolds to support cell and tissue interactions aiming at repairing bone tissue. As poly(lactide-co-glycolide)calcium phosphate (PLGACaP) scaffolds can be manufactured with different pore sizes, the aim of this study was to evaluate the effect of pore diameter on osteoblastic cell responses and bone tissue formation. Scaffolds were prepared with 85% porosity, with pore diameters in the ranges 470590, 590850 and 8501200 mu m. Rat bone marrow stem cells differentiated into osteoblasts were cultured on the scaffolds for up to 10 days to evaluate cell growth, alkaline phosphatase (ALP) activity and the gene expression of the osteoblast markers RUNX2, OSX, COL, MSX2, ALP, OC and BSP by real-time PCR. Scaffolds were implanted in critical size rat calvarial defects for 2, 4, and 8 weeks for histomorphometric analysis. Cell growth and ALP activity were not affected by the pore size; however, there was an increase in the gene expression of osteoblastic markers with the increase in the pore sizes. At 2 weeks all scaffolds displayed a similar amount of bone and blood vessels formation. At 4 and 8 weeks much more bone formation and an increased number of blood vessels were observed in scaffolds with pores of 470590 mu m. These results show that PLGACaP is a promising biomaterial for bone engineering. However, ideally, combinations of larger (similar to 1000 mu m) and smaller (similar to 500 mu m) pores in a single scaffold would optimize cellular and tissue responses during bone healing. Copyright (C) 2011 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During orthodontic tooth movement (OTM), alveolar bone is resorbed by osteoclasts in compression sites (CS) and is deposited by osteoblasts in tension sites (TS). The aim of this study was to develop a standardized OTM protocol in mice and to investigate the expression of bone resorption and deposition markers in CS and TS. An orthodontic appliance was placed in C57BL6/J mice. To define the ideal orthodontic force, the molars of the mice were subjected to forces of 0.1 N, 0.25 N, 0.35 N and 0.5 N. The expression of mediators that are involved in bone remodeling at CS and TS was analyzed using a Real-Time PCR. The data revealed that a force of 0.35 N promoted optimal OTM and osteoclast recruitment without root resorption. The levels of TNF-alpha, RANKL, MMP13 and OPG were all altered in CS and TS. Whereas TNF-a and Cathepsin K exhibited elevated levels in CS. RUNX2 and OCN levels were higher in TS. Our results suggest that 0.35 N is the ideal force for OTM in mice and has no side effects. Moreover, the expression of bone remodeling markers differed between the compression and the tension areas, potentially explaining the distinct cellular migration and differentiation patterns in each of these sites. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A nanocomposite based on bacterial cellulose (BC) and type I collagen (COL) was evaluated for in vitro bone regeneration. BC membranes were modified by glycine esterification followed by cross-linking of type I collagen employing 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide. Collagen incorporation was studied by spectroscopy analysis. X-Ray diffraction showed changes in the BC crystallinity after collagen incorporation. The elastic modulus and tensile strength for BC-COL decreased, while the strain at failure showed a slight increase, even after sterilization, as compared to pristine BC. Swelling tests and contact angle measurements were also performed. Cell culture experiments performed with osteogenic cells were obtained by enzymatic digestion of newborn rat calvarium revealed similar features of cell morphology for cultures grown on both membranes. Cell viability/proliferation was not different between BC and BC-COL membranes at day 10 and 14. The high total protein content and ALP activity at day 17 in cells cultured on BC-COL indicate that this composite allowed the development of the osteoblastic phenotype in vitro. Thus, BC-COL should be considered as alternative biomaterial for bone tissue engineering.