944 resultados para stochastic biosensing
Resumo:
The principal aim of this paper is to estimate a stochastic frontier costfunction and an inefficiency effects model in the analysis of the primaryhealth care services purchased by the public authority and supplied by 180providers in 1996 in Catalonia. The evidence from our sample does not supportthe premise that contracting out has helped improve purchasing costefficiency in primary care. Inefficient purchasing cost was observed in thecomponent of this purchasing cost explicitly included in the contract betweenpurchaser and provider. There are no observable incentives for thecontracted-out primary health care teams to minimise prescription costs, whichare not explicitly included in the present contracting system.
Resumo:
The need for integration in the supply chain management leads us to considerthe coordination of two logistic planning functions: transportation andinventory. The coordination of these activities can be an extremely importantsource of competitive advantage in the supply chain management. The battle forcost reduction can pass through the equilibrium of transportation versusinventory managing costs. In this work, we study the specific case of aninventory-routing problem for a week planning period with different types ofdemand. A heuristic methodology, based on the Iterated Local Search, isproposed to solve the Multi-Period Inventory Routing Problem with stochasticand deterministic demand.
Resumo:
In this paper, generalizing results in Alòs, León and Vives (2007b), we see that the dependence of jumps in the volatility under a jump-diffusion stochastic volatility model, has no effect on the short-time behaviour of the at-the-money implied volatility skew, although the corresponding Hull and White formula depends on the jumps. Towards this end, we use Malliavin calculus techniques for Lévy processes based on Løkka (2004), Petrou (2006), and Solé, Utzet and Vives (2007).
Resumo:
In this paper we use Malliavin calculus techniques to obtain an expression for the short-time behavior of the at-the-money implied volatility skew for a generalization of the Bates model, where the volatility does not need to be neither a difussion, nor a Markov process as the examples in section 7 show. This expression depends on the derivative of the volatility in the sense of Malliavin calculus.
Resumo:
The evolution of boundedly rational rules for playing normal form games is studied within stationary environments ofstochastically changing games. Rules are viewed as algorithms prescribing strategies for the different normal formgames that arise. It is shown that many of the folk results of evolutionary game theory typically obtained witha fixed game and fixed strategies carry over to the present case. The results are also related to recent experimentson rules and games.
Resumo:
We have analyzed the effects of the addition of external noise to nondynamical systems displaying intrinsic noise, and established general conditions under which stochastic resonance appears. The criterion we have found may be applied to a wide class of nondynamical systems, covering situations of different nature. Some particular examples are discussed in detail.
Resumo:
This contribution builds upon a former paper by the authors (Lipps and Betz 2004), in which a stochastic population projection for East- and West Germany is performed. Aim was to forecast relevant population parameters and their distribution in a consistent way. We now present some modifications, which have been modelled since. First, population parameters for the entire German population are modelled. In order to overcome the modelling problem of the structural break in the East during reunification, we show that the adaptation process of the relevant figures by the East can be considered to be completed by now. As a consequence, German parameters can be modelled just by using the West German historic patterns, with the start-off population of entire Germany. Second, a new model to simulate age specific fertility rates is presented, based on a quadratic spline approach. This offers a higher flexibility to model various age specific fertility curves. The simulation results are compared with the scenario based official forecasts for Germany in 2050. Exemplary for some population parameters (e.g. dependency ratio), it can be shown that the range spanned by the medium and extreme variants correspond to the s-intervals in the stochastic framework. It seems therefore more appropriate to treat this range as a s-interval covering about two thirds of the true distribution.
Resumo:
We study the dynamics of generic reaction-diffusion fronts, including pulses and chemical waves, in the presence of multiplicative noise. We discuss the connection between the reaction-diffusion Langevin-like field equations and the kinematic (eikonal) description in terms of a stochastic moving-boundary or sharp-interface approximation. We find that the effective noise is additive and we relate its strength to the noise parameters in the original field equations, to first order in noise strength, but including a partial resummation to all orders which captures the singular dependence on the microscopic cutoff associated with the spatial correlation of the noise. This dependence is essential for a quantitative and qualitative understanding of fluctuating fronts, affecting both scaling properties and nonuniversal quantities. Our results predict phenomena such as the shift of the transition point between the pushed and pulled regimes of front propagation, in terms of the noise parameters, and the corresponding transition to a non-Kardar-Parisi-Zhang universality class. We assess the quantitative validity of the results in several examples including equilibrium fluctuations and kinetic roughening. We also predict and observe a noise-induced pushed-pulled transition. The analytical predictions are successfully tested against rigorous results and show excellent agreement with numerical simulations of reaction-diffusion field equations with multiplicative noise.
Resumo:
A precise and simple computational model to generate well-behaved two-dimensional turbulent flows is presented. The whole approach rests on the use of stochastic differential equations and is general enough to reproduce a variety of energy spectra and spatiotemporal correlation functions. Analytical expressions for both the continuous and the discrete versions, together with simulation algorithms, are derived. Results for two relevant spectra, covering distinct ranges of wave numbers, are given.
Resumo:
We study front propagation in stirred media using a simplified modelization of the turbulent flow. Computer simulations reveal the existence of the two limiting propagation modes observed in recent experiments with liquid phase isothermal reactions. These two modes respectively correspond to a wrinkled although sharp propagating interface and to a broadened one. Specific laws relative to the enhancement of the front velocity in each regime are confirmed by our simulations.
Resumo:
We study nonstationary non-Markovian processes defined by Langevin-type stochastic differential equations with an OrnsteinUhlenbeck driving force. We concentrate on the long time limit of the dynamical evolution. We derive an approximate equation for the correlation function of a nonlinear nonstationary non-Markovian process, and we discuss its consequences. Non-Markovicity can introduce a dependence on noise parameters in the dynamics of the correlation function in cases in which it becomes independent of these parameters in the Markovian limit. Several examples are discussed in which the relaxation time increases with respect to the Markovian limit. For a Brownian harmonic oscillator with fluctuating frequency, the non-Markovicity of the process decreases the domain of stability of the system, and it can change an infradamped evolution into an overdamped one.
Resumo:
Stochastic processes defined by a general Langevin equation of motion where the noise is the non-Gaussian dichotomous Markov noise are studied. A non-FokkerPlanck master differential equation is deduced for the probability density of these processes. Two different models are exactly solved. In the second one, a nonequilibrium bimodal distribution induced by the noise is observed for a critical value of its correlation time. Critical slowing down does not appear in this point but in another one.
Resumo:
The diffusion of passive scalars convected by turbulent flows is addressed here. A practical procedure to obtain stochastic velocity fields with well¿defined energy spectrum functions is also presented. Analytical results are derived, based on the use of stochastic differential equations, where the basic hypothesis involved refers to a rapidly decaying turbulence. These predictions are favorable compared with direct computer simulations of stochastic differential equations containing multiplicative space¿time correlated noise.
Resumo:
Semiclassical Einstein-Langevin equations for arbitrary small metric perturbations conformally coupled to a massless quantum scalar field in a spatially flat cosmological background are derived. Use is made of the fact that for this problem the in-in or closed time path effective action is simply related to the Feynman-Vernon influence functional which describes the effect of the ``environment,'' the quantum field which is coarse grained here, on the ``system,'' the gravitational field which is the field of interest. This leads to identify the dissipation and noise kernels in the in-in effective action, and to derive a fluctuation-dissipation relation. A tensorial Gaussian stochastic source which couples to the Weyl tensor of the spacetime metric is seen to modify the usual semiclassical equations which can be veiwed now as mean field equsations. As a simple application we derive the correlation functions of the stochastic metric fluctuations produced in a flat spacetime with small metric perturbations due to the quantum fluctuations of the matter field coupled to these perturbations.