890 resultados para state space model
Resumo:
Operational Modal Analysis consists on estimate the modal parameters of a structure (natural frequencies, damping ratios and modal vectors) from output-only vibration measurements. The modal vectors can be only estimated where a sensor is placed, so when the number of available sensors is lower than the number of tested points, it is usual to perform several tests changing the position of the sensors from one test to the following (multiple setups of sensors): some sensors stay at the same position from setup to setup, and the other sensors change the position until all the tested points are covered. The permanent sensors are then used to merge the mode shape estimated at each setup (or partial modal vectors) into global modal vectors. Traditionally, the partial modal vectors are estimated independently setup by setup, and the global modal vectors are obtained in a postprocess phase. In this work we present two state space models that can be used to process all the recorded setups at the same time, and we also present how these models can be estimated using the maximum likelihood method. The result is that the global mode shape of each mode is obtained automatically, and subsequently, a single value for the natural frequency and damping ratio of the mode is computed. Finally, both models are compared using real measured data.
Resumo:
Includes index.
Resumo:
In this paper, we extend the state-contingent production approach to principal–agent problems to the case where the state space is an atomless continuum. The approach is modelled on the treatment of optimal tax problems. The central observation is that, under reasonable conditions, the optimal contract may involve a fixed wage with a bonus for above-normal performance. This is analogous to the phenomenon of "bunching" at the bottom in the optimal tax literature.
Resumo:
The importance of availability of comparable real income aggregates and their components to applied economic research is highlighted by the popularity of the Penn World Tables. Any methodology designed to achieve such a task requires the combination of data from several sources. The first is purchasing power parities (PPP) data available from the International Comparisons Project roughly every five years since the 1970s. The second is national level data on a range of variables that explain the behaviour of the ratio of PPP to market exchange rates. The final source of data is the national accounts publications of different countries which include estimates of gross domestic product and various price deflators. In this paper we present a method to construct a consistent panel of comparable real incomes by specifying the problem in state-space form. We present our completed work as well as briefly indicate our work in progress.
Resumo:
In the UK there has been a proliferation of agencies at differing regulatory scales as part of the rescaling and restructuring of the state by New Labour, following the neoliberal policies of previous Conservative governments. This raises questions concerning the extent to which New Labour's urban state restructuring is embedded within neoliberalism, and the local tensions and contradictions arising from emergent New Labour urban state restructuring. This paper examines these questions through the analysis of key policy features of New Labour, and the in-depth exploration of two programmes that are reshaping urban governance arrangements, namely Local Strategic Partnerships (LSPs) and New Deal for Communities (NDC) programmes. We conclude that New Labour's restructuring is best understood in terms of the extended reproduction (roll-out) of neoliberalism. While these “new institutional fixes” are only weakly established and exhibit internal contradictions and tensions, these have not led to a broader contestation of neoliberalism.
Resumo:
Classification is the most basic method for organizing resources in the physical space, cyber space, socio space and mental space. To create a unified model that can effectively manage resources in different spaces is a challenge. The Resource Space Model RSM is to manage versatile resources with a multi-dimensional classification space. It supports generalization and specialization on multi-dimensional classifications. This paper introduces the basic concepts of RSM, and proposes the Probabilistic Resource Space Model, P-RSM, to deal with uncertainty in managing various resources in different spaces of the cyber-physical society. P-RSM’s normal forms, operations and integrity constraints are developed to support effective management of the resource space. Characteristics of the P-RSM are analyzed through experiments. This model also enables various services to be described, discovered and composed from multiple dimensions and abstraction levels with normal form and integrity guarantees. Some extensions and applications of the P-RSM are introduced.
Resumo:
2000 Mathematics Subject Classification: Primary 60J80, Secondary 60G99.
Resumo:
We have studied numerically the effect of quenched site dilution on a weak first-order phase transition in three dimensions. We have simulated the site diluted three-states Potts model studying in detail the secondorder region of its phase diagram. We have found that the n exponent is compatible with the one of the three-dimensional diluted Ising model, whereas the h exponent is definitely different.
Resumo:
Asset health inspections can produce two types of indicators: (1) direct indicators (e.g. the thickness of a brake pad, and the crack depth on a gear) which directly relate to a failure mechanism; and (2) indirect indicators (e.g. the indicators extracted from vibration signals and oil analysis data) which can only partially reveal a failure mechanism. While direct indicators enable more precise references to asset health condition, they are often more difficult to obtain than indirect indicators. The state space model provides an efficient approach to estimating direct indicators by using indirect indicators. However, existing state space models to estimate direct indicators largely depend on assumptions such as, discrete time, discrete state, linearity, and Gaussianity. The discrete time assumption requires fixed inspection intervals. The discrete state assumption entails discretising continuous degradation indicators, which often introduces additional errors. The linear and Gaussian assumptions are not consistent with nonlinear and irreversible degradation processes in most engineering assets. This paper proposes a state space model without these assumptions. Monte Carlo-based algorithms are developed to estimate the model parameters and the remaining useful life. These algorithms are evaluated for performance using numerical simulations through MATLAB. The result shows that both the parameters and the remaining useful life are estimated accurately. Finally, the new state space model is used to process vibration and crack depth data from an accelerated test of a gearbox. During this application, the new state space model shows a better fitness result than the state space model with linear and Gaussian assumption.
Resumo:
The health effects of cold and hot temperatures are strongest in the frail and elderly. A large number of deaths in this "susceptible pool" after heat waves and cold snaps can cause mortality displacement, where an immediate increase in mortality is somewhat offset by a subsequent decrease in the following weeks. There may also be longer-term implications, as reductions in the pool caused by hot summers can reduce cold-related mortality in the following winter. A state-space model was used to simulate the numbers in the susceptible pool over time. We simulated the effects of harsh winters and heat waves, and varied the size of the susceptible pool. The larger the susceptible pool the smaller the mortality displacement. When 1% of the population were susceptible a harsh winter lead to an average of just 3 months of life lost per cold-related death, whereas a pool size of 10% meant that 24 months of life were lost per death. The impact of a cold spell on months of life lost was greater when the increased risk of death also applied to healthy people. The number of deaths caused by an August heat wave were reduced when there was a prior heat wave in June which reduced the susceptible pool. We were able to mimic some observed seasonal patterns in mortality using a simple state-space model. A better understanding of the size and dynamics of the susceptible pool will improve our understanding of the health effects of temperature.