960 resultados para split luciferase complementation assay
Resumo:
To test the robustness and validity of our prototype LPS-specific multiplex PCR on P. multocida field isolates and develop the PCR into a diagnostic test capable of accurately and reliably typing P. multocida strains.
Resumo:
In the fields of organic electronics and biotechnology, applications for organic polymer thin films fabricated using low-temperature non-equilibrium plasma techniques are gaining significant attention because of the physical and chemical stability of thin films and the low cost of production. Polymer thin films were fabricated from non-synthetic terpinen-4-ol using radiofrequency polymerization (13.56 MHz) on low loss dielectric substrates and their permittivity properties were ascertained to determine potential applications for these organic films. Real and imaginary parts of permittivity as a function of frequency were measured using the variable angle spectroscopic ellipsometer. The real part of permittivity (k) was found to be between 2.34 and 2.65 in the wavelength region of 400–1100 nm, indicating a potential low-k material. These permittivity values were confirmed at microwave frequencies. Dielectric properties of polyterpenol films were measured by means of split post dielectric resonators (SPDRs) operating at frequencies of 10 GHz and 20 GHz. Permittivity increased for samples deposited at higher RF energy – from 2.65 (25 W) to 2.83 (75 W) measured by a 20-GHz SPDR and from 2.32 (25 W) to 2.53 (100 W) obtained using a 10-GHz SPDR. The error in permittivity measurement was predominantly attributed to the uncertainty in film thickness measurement.
Resumo:
Certain bacteria present on frog skin can prevent infection by the pathogenic fungus Batrachochytrium dendrobatidis (Bd), conferring disease resistance. Previous studies have used agar-based in vitro challenge assays to screen bacteria for Bd-inhibitory activity and to identify candidates for bacterial supplementation trials. However, agar-based assays can be difficult to set up and to replicate reliably. To overcome these difficulties, we developed a semi-quantitative spectrophotometric challenge assay technique. Cell-free supernatants were prepared from filtered bacterial cultures and added to 96-well plates in replicated wells containing Bd zoospores suspended in tryptone-gelatin hydrolysate-lactose (TGhL) broth medium. Plates were then read daily on a spectrophotometer until positive controls reached maximum growth in order to determine growth curves for Bd. We tested the technique by screening skin bacteria from the Australian green-eyed tree frog Litoria serrata. Of bacteria tested, 31% showed some degree of Bd inhibition, while some may have promoted Bd growth, a previously unknown effect. Our cell-free supernatant challenge assay technique is an effective in vitro method for screening bacterial isolates for strong Bd-inhibitory activity. It contributes to the expanding field of bioaugmentation research, which could play a significant role in mitigating the effects of chytridiomycosis on amphibians around the world.
Resumo:
BACKGROUND: The recent development of very high resistance to phosphine in rusty grain beetle, Cryptolestes ferrugineus (Stephens), seriously threatens stored-grain biosecurity. The aim was to characterise this resistance, to develop a rapid bioassay for its diagnosis to support pest management and to document the distribution of resistance in Australia in 20072011. RESULTS: Bioassays of purified laboratory reference strains and field-collected samples revealed three phenotypes: susceptible, weakly resistant and strongly resistant. With resistance factors of > 1000 x , resistance to phosphine expressed by the strong resistance phenotype was higher than reported for any stored-product insect species. The new time-to-knockdown assay rapidly and accurately diagnosed each resistance phenotype within 6 h. Although less frequent in western Australia, weak resistance was detected throughout all grain production regions. Strong resistance occurred predominantly in central storages in eastern Australia. CONCLUSION: Resistance to phosphine in the rusty grain beetle is expressed through two identifiable phenotypes: weak and strong. Strong resistance requires urgent changes to current fumigation dosages. The development of a rapid assay for diagnosis of resistance enables the provision of same-day advice to expedite resistance management decisions. (c) 2012 Commonwealth of Australia. Published by John Wiley & Sons, Ltd.
Resumo:
Using analysis-by-synthesis (AbS) approach, we develop a soft decision based switched vector quantization (VQ) method for high quality and low complexity coding of wideband speech line spectral frequency (LSF) parameters. For each switching region, a low complexity transform domain split VQ (TrSVQ) is designed. The overall rate-distortion (R/D) performance optimality of new switched quantizer is addressed in the Gaussian mixture model (GMM) based parametric framework. In the AbS approach, the reduction of quantization complexity is achieved through the use of nearest neighbor (NN) TrSVQs and splitting the transform domain vector into higher number of subvectors. Compared to the current LSF quantization methods, the new method is shown to provide competitive or better trade-off between R/D performance and complexity.
Resumo:
Opsonin-independent phagocytosis of Group B Streptococcus (GBS) is important in defense against neonatal GBS infections. A recent study indicated a role for GBS pilus in macrophage phagocytosis (Maisey et al Faseb J 22 2008 1715-24). We studied 163 isolates from different phylogenetic backgrounds and those possessing or lacking the gene encoding the pilus backbone protein, Spb1 (SAN1518, PI-2b) and spb1-deficient mutants of wild-type (WT) serotype III-3 GBS 874391 in non-opsonic phagocytosis assays using J774A.1 macrophages. Numbers of GBS phagocytosed differed up to 23-fold depending on phylogenetic background; isolates possessing spb1 were phagocytosed more than isolates lacking spb1. Comparing WT GBS and isogenic spb1-deficient mutants showed WT was phagocytosed better compared to mutants; Spb1 also enhanced intracellular survival as mutants were killed more efficiently. Complementation of mutants restored phagocytosis and resistance to killing in J774A.1 macrophages. Spb1 antiserum revealed surface expression in WT GBS and spatial distribution relative to capsular polysaccharide. spb1 did not affect macrophage nitric oxide and TNF-alpha responses; differences in phagocytosis did not correlate with N-acetyl d-glucosamine (from GBS cell-wall) according to enzyme-linked lectin-sorbent assay. Together, these findings support a role for phylogenetic lineage and Spb1 in opsonin-independent phagocytosis and intracellular survival of GBS in J774A.1 macrophages.
Resumo:
Coccidiosis is a costly worldwide enteric disease of chickens caused by parasites of the genus Eimeria. At present, there are seven described species that occur globally and a further three undescribed, operational taxonomic units (OTUs X, Y, and Z) that are known to infect chickens from Australia. Species of Eimeria have both overlapping morphology and pathology and frequently occur as mixed-species infections. This makes definitive diagnosis with currently available tests difficult and, to date, there is no test for the detection of the three OTUs. This paper describes the development of a PCR-based assay that is capable of detecting all ten species of Eimeria, including OTUs X, Y, and Z in field samples. The assay is based on a single set of generic primers that amplifies a single diagnostic fragment from the mitochondrial genome of each species. This one-tube assay is simple, low-cost, and has the capacity to be high throughput. It will therefore be of great benefit to the poultry industry for Eimeria detection and control, and the confirmation of identity and purity of vaccine strains.
Resumo:
The Old World screwworm (OWS) fly, Chrysomya bezziana, is a serious pest of livestock, wildlife and humans in tropical Africa, parts of the Middle East, the Indian subcontinent, south-east Asia and Papua New Guinea. Although to date Australia remains free of OWS flies, an incursion would have serious economic and animal welfare implications. For these reasons Australia has an OWS fly preparedness plan including OWS fly surveillance with fly traps. The recent development of an improved OWS fly trap and synthetic attractant and a specific and sensitive real-time PCR molecular assay for the detection of OWS flies in trap catches has improved Australia's OWS fly surveillance capabilities. Because all Australian trap samples gave negative results in the PCR assay, it was deemed necessary to include a positive control mechanism to ensure that fly DNA was being successfully extracted and amplified and to guard against false negative results. A new non-competitive internal amplification control (IAC) has been developed that can be used in conjunction with the OWS fly PCR assay in a multiplexed single-tube reaction. The multiplexed assay provides an indicator of the performance of DNA extraction and amplification without greatly increasing labour or reagent costs. The fly IAC targets a region of the ribosomal 16S mitochondrial DNA which is conserved across at least six genera of commonly trapped flies. Compared to the OWS fly assay alone, the multiplexed OWS fly and fly IAC assay displayed no loss in sensitivity or specificity for OWS fly detection. The multiplexed OWS fly and fly IAC assay provides greater confidence for trap catch samples returning negative OWS fly results. © 2014 International Atomic Energy Agency.
Resumo:
Pasteurella multocida is a Gram-negative bacterial pathogen that is the causative agent of a wide range of diseases in many animal species, including humans. A widely used method for differentiation of P. multocida strains involves the Heddleston serotyping scheme. This scheme was developed in the early 1970s and classifies P. multocida strains into 16 somatic or lipopolysaccharide (LPS) serovars using an agar gel diffusion precipitin test. However, this gel diffusion assay is problematic, with difficulties reported in accuracy, reproducibility, and the sourcing of quality serovar-specific antisera. Using our knowledge of the genetics of LPS biosynthesis in P. multocida, we have developed a multiplex PCR (mPCR) that is able to differentiate strains based on the genetic organization of the LPS outer core biosynthesis loci. The accuracy of the LPS-mPCR was compared with classical Heddleston serotyping using LPS compositional data as the "gold standard." The LPS-mPCR correctly typed 57 of 58 isolates; Heddleston serotyping was able to correctly and unambiguously type only 20 of the 58 isolates. We conclude that our LPS-mPCR is a highly accurate LPS genotyping method that should replace the Heddleston serotyping scheme for the classification of P. multocida strains.
Resumo:
Testing for mutagenicity and carcinogenicity has become an integral part of the toxicological evaluation of drugs and chemicals. Standard carcinogenicity tests in vivo require both large numbers of animals and prolonged experiments. To circumvent these problems, several rapid tests have been developed for preliminary screening of mutagens and carcinogens in vitro. Ames and his associates, the first to develop a mutation test, used mutant strains of Salmonella typhimurium [1]. Mutation tests with Escherichia coli, Bacillus subtilis, Neurospora crassa and Saccharomyces cerevisiae, and DNA-repair tests with E. coli and B. subtilis, have been developed. Cytogenetic assays, in vivo as well as in vitro, in both plant and animal systems, are also used to detect potential mutagens and carcinogens. Transfection is inhibited by base mutation, cleavage of DNA, loss of cohesive ends, interaction with histones, spermidine, nalidixic acid, etc. [3]. The efficiency of transfection is affected by temperature, DNA structure and the condition of the competence of the recipient cells [3]. Transfection assays with phages MS: RNA and ~i, x 174-DNA have been reported [15]. A fast and easy transfection assay using colitis bacteriophage DNA is reported in this communication.
Resumo:
Further improvement in performance, to achieve near transparent quality LSF quantization, is shown to be possible by using a higher order two dimensional (2-D) prediction in the coefficient domain. The prediction is performed in a closed-loop manner so that the LSF reconstruction error is the same as the quantization error of the prediction residual. We show that an optimum 2-D predictor, exploiting both inter-frame and intra-frame correlations, performs better than existing predictive methods. Computationally efficient split vector quantization technique is used to implement the proposed 2-D prediction based method. We show further improvement in performance by using weighted Euclidean distance.
Resumo:
Escherichia coli sequence type 131 (ST131) have emerged as a pandemic lineage of important multidrug resistant pathogens worldwide. Despite many studies examining the epidemiology of ST131, only a few studies to date have investigated the capacity of ST131 strains to form biofilms. Some of these studies have reported contrasting findings, with no specific ST131 biofilm-promoting factors identified. Here we examined a diverse collection of ST131 isolates for in vitro biofilm formation in different media and assay conditions, including urine from healthy adult women. We found significant differences among strains and assay conditions, which offers an explanation for the contrasting findings reported by previous studies using a single condition. Importantly, we showed that expression of type 1 fimbriae is a critical determinant for biofilm formation by ST131 strains and that inhibition of the FimH adhesin significantly reduces biofilm formation. We also offer direct genetic evidence for the contribution of type 1 fimbriae in biofilm formation by the reference ST131 strain EC958, a representative of the clinically dominant H30-Rx ST131 subgroup. This is the first study of ST131 biofilm formation in biologically relevant conditions and paves the way for the application of FimH inhibitors in treating drug resistant ST131 biofilm infections.
Resumo:
Indoor air quality is a critical factor in the classroom due to high people concentration in a unique space. Indoor air pollutant might increase the chance of both long and short-term health problems among students and staff, reduce the productivity of teachers and degrade the student’s learning environment and comfort. Adequate air distribution strategies may reduce risk of infection in classroom. So, the purpose of air distribution systems in a classroom is not only to maximize conditions for thermal comfort, but also to remove indoor contaminants. Natural ventilation has the potential to play a significant role in achieving improvements in IAQ. The present study compares the risk of airborne infection between Natural Ventilation (opening windows and doors) and a Split-System Air Conditioner in a university classroom. The Wells-Riley model was used to predict the risk of indoor airborne transmission of infectious diseases such as influenza, measles and tuberculosis. For each case, the air exchange rate was measured using a CO2 tracer gas technique. It was found that opening windows and doors provided an air exchange rate of 2.3 air changes/hour (ACH), while with the Split System it was 0.6 ACH. The risk of airborne infection ranged between 4.24 to 30.86 % when using the Natural Ventilation and between 8.99 to 43.19% when using the Split System. The difference of airborne infection risk between the Split System and the Natural Ventilation ranged from 47 to 56%. Opening windows and doors maximize Natural Ventilation so that the risk of airborne contagion is much lower than with Split System.
Resumo:
MicroRNAs (miRNAs) are critical post-transcriptional regulators. Based on a previous genome-wide association (GWA) scan, we conducted a polymorphism in microRNAs' Target Sites (poly-miRTS)-centric multistage meta-analysis for lumbar spine (LS)-, total hip (HIP)-, and femoral neck (FN)-bone mineral density (BMD). In stage I, 41,102 poly-miRTSs were meta-analyzed in 7 cohorts with a genome-wide significance (GWS) α=0.05/41,102=1.22×10-6. By applying α=5×10-5 (suggestive significance), 11 poly-miRTSs were selected, with FGFRL1 rs4647940 and PRR5 rs3213550 as top signals for FN-BMD (P-value=7.67×10-6 and 1.58×10-5) in gender-combined sample. In stage II in silico replication (two cohorts), FGFRL1 rs4647940 was the only signal marginally replicated for FN-BMD (P-value=5.08×10-3) at α=0.10/11=9.09×10-3. PRR5 rs3213550 was also selected based on biological significance. In stage III de novo genotyping replication (two cohorts), FGFRL1 rs4647940 was the only signal significantly replicated for FN-BMD (P-value=7.55×10-6) at α=0.05/2=0.025 in gender-combined sample. Aggregating three stages, FGFRL1 rs4647940 was the single stage I-discovered and stages II- and III-replicated signal attaining GWS for FN-BMD (P-value=8.87×10-12). Dual-luciferase reporter assays demonstrated that FGFRL1 3' untranslated region harboring rs4647940 appears to be hsa-miR-140-5p's target site. In a zebrafish microinjection experiment, dre-miR-140-5p is shown to exert a dramatic impact on craniofacial skeleton formation. Taken together, we provided functional evidence for a novel FGFRL1 poly-miRTS rs4647940 in a previously known 4p16.3 locus, and experimental and clinical genetics studies have shown both FGFRL1 and hsa-miR-140-5p are important for bone formation. © The Author 2015. Published by Oxford University Press. All rights reserved.