382 resultados para spinner dolphin
Resumo:
In many species, particular individuals consistently lead group travel. While benefits to followers often are relatively obvious, including access to resources, benefits to leaders are often less obvious. This is especially true for species that feed on patchy mobile resources where all group members may locate prey simultaneously and food intake likely decreases with increasing group size. Leaders in highly complex habitats, however, could provide access to foraging resources for less informed relatives, thereby gaining indirect benefits by helping kin. Recently, leadership has been documented in a population of bottlenose dolphins (Tursiops truncatus) where direct benefits to leaders appear unlikely. To test whether leaders could benefit indirectly we examined relatedness between leader-follower pairs and compared these levels to pairs who associated but did not have leader-follower relationship (neither ever led the other). We found the average relatedness value for leader-follower pairs was greater than expected based on chance. The same was not found when examining non leader-follower pairs. Additionally, relatedness for leader-follower pairs was positively correlated with association index values, but no correlation was found for this measure in non leader-follower pairs. Interestingly, haplotypes were not frequently shared between leader-follower pairs (25%). Together, these results suggest that bottlenose dolphin leaders have the opportunity to gain indirect benefits by leading relatives. These findings provide a potential mechanism for the maintenance of leadership in a highly dynamic fission-fusion population with few obvious direct benefits to leaders.
Resumo:
Interest in the health of marine mammals has increased due, in part, to the attention given to human impact on the marine environment. Recent mass strandings of the Atlantic bottlenose dolphin (Tursiops truncatus) and rising mortalities of the endangered Florida manatee (Trichechus manatus latirostris) have raised questions on the extent to which pollution, infectious disease, "stress," and captivity influence the immune system of these animals. This study has provided the first in-depth characterization of immunocytes in the peripheral blood of dolphins (n = 190) and manatees (n = 56). Immunocyte morphology and baseline values were determined in clinically normal animals under free-ranging, stranded and captive living conditions as well as by age and sex. Additionally, immunocyte population dynamics were characterized in sick animals. This was accomplished with traditional cytochemical techniques and new lymphocyte phenotyping methodology which was validated in this study. Traditional cytochemical techniques demonstrated that blood immunocyte morphology and cell numbers are similar to terrestrial mammals with some notable exceptions. The manatee heterophilic granulocyte is a morphologically unique cell and probably functions similarly to the typical mammalian neutrophil. Eosinophils were rarely found in manatees but were uncommonly high in healthy and sick dolphins. Basophils were not identified. Manatees had higher total lymphocyte numbers compared to dolphins and most terrestrial mammals. Lymphocyte subsets identified in healthy animals included T$\rm\sb{h}$, T$\rm\sb{c/s}$, B and NK cells. Dolphin and manatee T and B cell values were higher than those reported in man and most terrestrial mammals. The manatee has extraordinarily high absolute numbers of circulating T$\rm\sb{h}$ cells which suggests an enhanced immunological response capability. With few exceptions, immunocyte types and absolute numbers were not significantly different between free-ranging, stranded and captive categories or between sex and age categories. The evaluation of immunocyte dynamics in various disease states demonstrated a wide variation in cellular responses which provided new insights into innate, humoral and cell-mediated immunity in these species. Additionally, this study demonstrated that lymphocyte phenotyping has diagnostic significance and could be developed into a potential indicator of immunocompetence in both free-ranging and captive dolphin and manatee populations.
Resumo:
Interest in the health of marine mammals has increased due, in part, to the attention given to human impact on the marine environment. Recent mass strandings of the Atlantic bottlenose dolphin (Tursiops truncatus) and rising mortalities of the endangered Florida manatee (Trichechus manatus latirostris) have raised questions on the extent to which pollution, infectious disease, "stress," and captivity influence the immune system of these animals. This study has provided the first in-depth characterization of immunocytes in the peripheral blood of dolphins (n=180) and manatees (n=56). Immunocyte morphology and baseline values were determined in clinically normal animals under free-ranging, stranded and captive living conditions as well as by age and sex. Additionally, immuocyte population dynamics were characterized in sick animals. This was accomplished with traditional cytochemical techniques and new lymphocyte phenotyping methodology which was validated in this study. Traditional cytochemical techniques demonstrated that blood immunocyte morphology and cell numbers are similar to terrestrial mammals with some notable exceptions. The manatee heterophilic granulocyte is a morphologically unique cell and probably functions similarly to the typical mammalian neutrophil. Eosinophils were rarely found in manatees but were uncommonly high in healthy and sick dolphins. Basophils were not identified. Manatees had higher total lymphocyte numbers compared to dolphins and most terrestrial mammals. Lymphocyte subsets identified in healthy animals included Th, Tes, B and NK cells. Dolphin and manatee T and B cell values were higher than those reported in man and most terrestrial mammals. The manatee has extraordinarily high absolute numbers of circulating Th cells which suggests an enhanced immunological response capability. With few exceptions, immunocyte types and absolute numbers were not significantly different between free-ranging, stranded and captive categories or between sex and age categories. The evaluation of immunocyte dynamics in various disease states demonstrated a wide variation in cellular responses which provided new insights into innate, humoral and cell-mediated immunity in these species. Additionally, this study demonstrated that lymphocyte phenotyping has diagnostic significance and could be developed into a potential indicator of immunocompetence in both free-ranging and captive dolphin and manatee populations.
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.
Resumo:
[ES] On 31 August 2003, at 11:40 local time, c. 5 nm southwest of São Nicolau 16º33.1N, 024º27.7W), Cape Verde Islands, GT and PLS observed c.20 Fraser’s Dolphins Lagenodelphis hosei Fraser, 1956 (Fig.1). The sighting was made under excellent weather conditions (sea state Beaufort 2 with sun) from the 39.6 m diesel engine powered oceanographic research vessel Taliarte during a two week cetacean survey conducted as part of the Hydrocarpo project. The animals were c. 2.5 m in length, with a short beak, robust ody, small dorsal and pectoral fins and showed the characteristic longitudinal striping (cf. efferson et al.1993, Carwardine 1995).
Resumo:
BACKGROUND In the last 20 years, Cetacean Morbillivirus (CeMV) has been responsible for many die-offs in marine mammals worldwide, as clearly exemplified by the two dolphin morbillivirus (DMV) epizootics of 1990-1992 and 2006-2008, which affected Mediterranean striped dolphins (Stenella coeruleoalba). Between March and April 2011, the number of strandings on the Valencian Community coast (E Spain) increased. CASE PRESENTATION Necropsy and sample collection were performed in all stranded animals, with good state of conservation. Subsequently, histopathology, immunohistochemistry, conventional reverse transcription polymerase chain reaction (RT-PCR) and Universal Probe Library (UPL) RT-PCR assays were performed to identify Morbillivirus. Gross and microscopic findings compatible with CeMV were found in the majority of analyzed animals. Immunopositivity in the brain and UPL RT-PCR positivity in seven of the nine analyzed animals in at least two tissues confirmed CeMV systemic infection. Phylogenetic analysis, based on sequencing part of the phosphoprotein gene, showed that this isolate is a closely related dolphin morbillivirus (DMV) to that responsible for the 2006-2008 epizootics. CONCLUSION The combination of gross and histopathologic findings compatible with DMV with immunopositivity and molecular detection of DMV suggests that this DMV strain could cause this die-off event.
Resumo:
A bottlenose dolphin, stranded in the Canary Islands in 2001 exhibited non-suppurative encephalitis. No molecular detection of cetacean morbillivirus (CeMV) was found, but a herpesviral-specific band of 250 bp was detected in the lung and brain. The sequenced herpesviral PCR product was compared with GenBank sequences, obtaining 98% homology (p-distance of 0.02) with Human herpesvirus 1 (herpes simplex virus 1 or HSV-1). This is the first report of a herpes simplex-like infection in a stranded dolphin.
Resumo:
Cell-sheet techniques have been proven effective in various soft tissue engineering applications. In this experiment, we investigated the feasibility of bone tissue engineering using a hybrid of mesenchymal stem cell (MSC) sheets and PLGA meshes. Porcine MSCs were cultured to a thin layer of cell sheets via osteogenic induction. Tube-like long bones were constructed by wrapping the cell sheet on to PLGA meshes resulting in constructs which could be cultured in spinner flasks, prior to implantation in nude rats. Our results showed that the sheets were composed of viable cells and dense matrix with a thickness of about 80–120 mm, mineral deposition was also observed in the sheet. In vitro cultures demonstrated calcified cartilage-like tissue formation and most PLGA meshes were absorbed during the 8-week culture period. In vivo experiments revealed that dense mineralized tissue was formed in subcutaneous sites and the 8- week plants shared similar micro-CT characteristics with native bone. The neo tissue demonstrated histological markers for both bone and cartilage, indicating that the bone formation pathway in constructs was akin to endochondral ossification, with the residues of PLGA having an effect on the neo tissue organization and formation. These results indicate that cell-sheet approaches in combination with custom-shaped scaffolds have potential in producing bone tissue.
Resumo:
xpanding human chondrocytes in vitro while maintaining their ability to form cartilage remains a key challenge in cartilage tissue engineering. One promising approach to address this is to use microcarriers as substrates for chondrocyte expansion. While microcarriers have shown beneficial effects for expansion of animal and ectopic human chondrocytes, their utility has not been determined for freshly isolated adult human articular chondrocytes. Thus, we investigated the proliferation and subsequent chondrogenic differentiation of these clinically relevant cells on porous gelatin microcarriers and compared them to those expanded using traditional monolayers. Chondrocytes attached to microcarriers within 2 days and remained viable over 4 weeks of culture in spinner flasks. Cells on microcarriers exhibited a spread morphology and initially proliferated faster than cells in monolayer culture, however, with prolonged expansion they were less proliferative. Cells expanded for 1 month and enzymatically released from microcarriers formed cartilaginous tissue in micromass pellet cultures, which was similar to tissue formed by monolayer-expanded cells. Cells left attached to microcarriers did not exhibit chondrogenic capacity. Culture conditions, such as microcarrier material, oxygen tension, and mechanical stimulation require further investigation to facilitate the efficient expansion of clinically relevant human articular chondrocytes that maintain chondrogenic potential for cartilage regeneration applications.
Resumo:
The shoot represents the basic body plan in land plants. It consists of a repeated structure composed of stems and leaves. Whereas vascular plants generate a shoot in their diploid phase, non-vascular plants such as mosses form a shoot (called the gametophore) in their haploid generation. The evolution of regulatory mechanisms or genetic networks used in the development of these two kinds of shoots is unclear. TERMINAL EAR1-like genes have been involved in diploid shoot development in vascular plants. Here, we show that disruption of PpTEL1 from the moss Physcomitrella patens, causes reduced protonema growth and gametophore initiation, as well as defects in gametophore development. Leafy shoots formed on ΔTEL1 mutants exhibit shorter stems with more leaves per shoot, suggesting an accelerated leaf initiation (shortened plastochron), a phenotype shared with the Poaceae vascular plants TE1 and PLA2/LHD2 mutants. Moreover, the positive correlation between plastochron length and leaf size observed in ΔTEL1 mutants suggests a conserved compensatory mechanism correlating leaf growth and leaf initiation rate that would minimize overall changes in plant biomass. The RNA-binding protein encoded by PpTEL1 contains two N-terminus RNA-recognition motifs, and a third C-terminus non-canonical RRM, specific to TEL proteins. Removal of the PpTEL1 C-terminus (including this third RRM) or only 16–18 amino acids within it seriously impairs PpTEL1 function, suggesting a critical role for this third RRM. These results show a conserved function of the RNA-binding PpTEL1 protein in the regulation of shoot development, from early ancestors to vascular plants, that depends on the third TEL-specific RRM.
Resumo:
Background:Quantifying genetic diversity and metapopulation structure provides insights into the evolutionary history of a species and helps develop appropriate management strategies. We provide the first assessment of genetic structure in spinner sharks (Carcharhinus brevipinna), a large cosmopolitan carcharhinid, sampled from eastern and northern Australia and South Africa. Methods and Findings:Sequencing of the mitochondrial DNA NADH dehydrogenase subunit 4 gene for 430 individuals revealed 37 haplotypes and moderately high haplotype diversity (h = 0.6770 ±0.025). While two metrics of genetic divergence (ΦST and FST) revealed somewhat different results, subdivision was detected between South Africa and all Australian locations (pairwise ΦST, range 0.02717–0.03508, p values ≤ 0.0013; pairwise FST South Africa vs New South Wales = 0.04056, p = 0.0008). Evidence for fine-scale genetic structuring was also detected along Australia’s east coast (pairwise ΦST = 0.01328, p < 0.015), and between south-eastern and northern locations (pairwise ΦST = 0.00669, p < 0.04).Conclusions: The Indian Ocean represents a robust barrier to contemporary gene flow in C. brevipinna between Australia and South Africa. Gene flow also appears restricted along a continuous continental margin in this species, with data tentatively suggesting the delineation of two management units within Australian waters. Further sampling, however, is required for a more robust evaluation of the latter finding. Evidence indicates that all sampled populations were shaped by a substantial demographic expansion event, with the resultant high genetic diversity being cause for optimism when considering conservation of this commercially-targeted species in the southern Indo-Pacific.
Resumo:
A study was conducted in October 2006 in the Charleston, South Carolina area to test the movements of three different buoy line types to determine which produced a preferred profile that could reduce the risk of dolphin entanglement. Tests on diamond-braided nylon commonly used in the crab pot fishery were compared with stiffened line of Esterpro and calf types in both shallow and deep water environments using DSTmilli data loggers. Loggers were placed at intervals along the lines to record depth, and thus movements, over a 24 hour period. Three observers viewed video animations and charts created for each of the six trial days from the collected logger data and provided their opinions on the most desirable line type that fit set criteria. A quantitative analysis (ANCOVA) of the data was conducted taking into consideration daily tidal fluctuations and logger movements. Loggers tracking the tides had an r2 value approaching 1.00 and produced little movement other than with the tides. Conversely, r2 values approaching 0.00 were less affected by tidal movement and influenced by currents that cause more erratic movement. Results from this study showed that stiffened line, in particular the medium lay Esterpro type, produced the more desirable profiles that could reduce risk of dolphin entanglement. Combining the observer’s results with the ANCOVA results, Esterpro was chosen nearly 60% of the time as opposed to the nylon line which was only chosen 10% of the time. ANCOVA results showed that the stiffened lines performed better in both the shallow and deep water environments, while the nylon line only performed better during one trial in a deep water set, most probably due to the increased current velocities experienced that day. (58pp.)(PDF contains 68 pages)
Resumo:
Whenever human beings have looked out on the sea, they have seen whales. First from the shore and later from ships when humanity entered the ocean realm as seafarers, we have responded to seeing these creatures with awe and wonder. Even when we hunted whales, a period well chronicled both in history and in literature, the sight of a whale brought an adrenaline rush that was not totally linked to potential economic gain. The first trips on boats specifically to watch, rather than hunt, whales began around 45 years ago in Southern California where the migrating gray whales, seen in the distance from land, drew vessels out for a closer look. Since that time whalewatching has boomed, currently conducted in over 40 countries around the world, including Antarctica, and estimated by economists at the Whale and Dolphin Conservation Society to have a 1999 worldwide economic value of around $800 million USD. The economic contribution to local coastal communities is particularly significant in developing countries and those where declining fish populations (and in some cases like the Japanese, international bans on whaling) have driven harvesters to look for viable alternatives. Clearly, whalewatching is now, in many places around the world, a small but thriving part of the regional economy. Like in the days of whaling, we still get the rush, but for some, money is back contributing to the physiological response. (PDF contains 90 pages.)
Resumo:
This study summarizes the results of a survey designed to provide economic information about the financial status of commercial reef fish boats with homeports in the Florida Keys. A survey questionnaire was administered in the summer and fall of 1994 by interviewers in face-to-face meetings with owners or operators of randomly selected boats. Fishermen were asked for background information about themselves and their boats, their capital investments in boats and equipment, and about their average catches, revenues, and costs per trip for their two most important kinds of fishing trips during 1993 for species in the reef fish fishery. Respondents were characterized with regard to their dependence on the reef fish fishery as a source of household income. Boats were described in terms of their physical and financial characteristics. Different kinds of fishing trips were identified by the species that generated the greatest revenue. Trips were grouped into the following categories: yellowtail snapper (Ocyurus chrysurus); mutton snapper (Lutjanus analis), black grouper (Mycteroperca bonaci), or red grouper (Epinephelus morio); gray snapper (Lutjanus griseus); deeper water groupers and tilefishes; greater amberjack (Seriola dumerili); spiny lobster (Panulirus argus); king mackerel (Scomberomorus cavalla); and dolphin (Coryphaena hippurus). Average catches, revenues, routine trip costs, and net operating revenues per boat per trip and per boat per year were estimated for each category of fishing trips. In addition to its descriptive value, data collected during this study will aid in future examinations of the economic effects of various regulations on commercial reef fish fishermen.(PDF file contains 48 pages.)