995 resultados para spatial shaping
Resumo:
Perhaps the most innovative of all independent OLD ventures specialising in ROW content is Jaman. Founded in 2007 by IT entrepreneur Gaurav Dhillon, and based in San Mateo, California, Jaman is a quality specialist distributor of non-Hollywood films. As of late 2010, Jaman had 1.8 million registered users and attracts viewers from most countries in the world. 75% of all use is generated from outside the U.S. Jaman does very well in English speaking parts of the world, particularly current and former Commonwealth countries. The United Kingdom accounts for 29% of users, North America (U.S. and Canada) 26%, and India represents 23%. Jaman is sometimes referred to as ‘social cinema’: a website which brings together the critique and review of a cinephile website (the forums of Rue-morgue.com for cinefantastique movie fans for example) with the social interaction, community and functionality of a social media site (for example Facebook.com). Jaman could be considered a pioneer in this space; a first mover in wrapping commercial movie downloading in an interactive social experience.
Resumo:
Background: Biomineralization is a process encompassing all mineral containing tissues produced within an organism. One of the most dynamic examples of this process is the formation of the mollusk shell, comprising a variety of crystal phases and microstructures. The organic component incorporated within the shell is said to dictate this architecture. However general understanding of how this process is achieved remains ambiguous. The mantle is a conserved organ involved in shell formation throughout molluscs. Specifically the mantle is thought to be responsible for secreting the protein component of the shell. This study employs molecular approaches to determine the spatial expression of genes within the mantle tissue to further the elucidation of the shell biomineralization. Results: A microarray platform was custom generated (PmaxArray 1.0) from the pearl oyster Pinctada maxima. PmaxArray 1.0 consists of 4992 expressed sequence tags (ESTs) originating from mantle tissue. This microarray was used to analyze the spatial expression of ESTs throughout the mantle organ. The mantle was dissected into five discrete regions and analyzed for differential gene expression with PmaxArray 1.0. Over 2000 ESTs were determined to be differentially expressed among the tissue sections, identifying five major expression regions. In situ hybridization validated and further localized the expression for a subset of these ESTs. Comparative sequence similarity analysis of these ESTs revealed a number of the transcripts were novel while others showed significant sequence similarities to previously characterized shell related genes.
Resumo:
One of the fundamental motivations underlying computational cell biology is to gain insight into the complicated dynamical processes taking place, for example, on the plasma membrane or in the cytosol of a cell. These processes are often so complicated that purely temporal mathematical models cannot adequately capture the complex chemical kinetics and transport processes of, for example, proteins or vesicles. On the other hand, spatial models such as Monte Carlo approaches can have very large computational overheads. This chapter gives an overview of the state of the art in the development of stochastic simulation techniques for the spatial modelling of dynamic processes in a living cell.
Resumo:
Highlights ► Provides a review of the history and development of locative media. ► Outlines different human-computer interaction techniques applied in locative media. ► Discusses how locative media applications have changed interaction affordances in and of physical spaces. ► Discusses practices of people in urban settings that evolved through these new affordances. ► Provides an overview on methods to investigate and elaborate design principles for future locative media.
Resumo:
Self-segregation and compartimentalisation are observed experimentally to occur spontaneously on live membranes as well as reconstructed model membranes. It is believed that many of these processes are caused or supported by anomalous diffusive behaviours of biomolecules on membranes due to the complex and heterogeneous nature of these environments. These phenomena are on the one hand of great interest in biology, since they may be an important way for biological systems to selectively localize receptors, regulate signaling or modulate kinetics; and on the other, they provide an inspiration for engineering designs that mimick natural systems. We present an interactive software package we are developing for the purpose of simulating such processes numerically using a fundamental Monte Carlo approach. This program includes the ability to simulate kinetics and mass transport in the presence of either mobile or immobile obstacles and other relevant structures such as liquid-ordered lipid microdomains. We also present preliminary simulation results regarding the selective spatial localization and chemical kinetics modulating power of immobile obstacles on the membrane, obtained using the program.
Resumo:
Project as a Capstone Learning Unit: Courses of the QUT Faculty of BEE seek to enable students to practice as professionals in their respective disciplines. A major part of such practice is the instigation, management,monitoring, and reporting on an urban development project. This unit offers the student a capstone learning experience near the end of their fourth year of undergraduate study. Expose the student to a set of integrated activities, each building upon the preceding, and culminating in a 'completed' project. Students apply skills and knowledge attained earlier in the course and develop new abilities for application to a real-world problem, industry or research based, to simulate the design, development and management of a project solution. These 10-12minute seminar presentations comprise the mini-conference event that are of benefit to the wider surveying and spatial science industry.
Resumo:
Abstract: Goals and potential impacts of QUT corporate Blueprint3 framework, university has made significant investments in physical infrastructure, and investments to improve staff profiles, particularly in relation to science, technology, engineering, and mathematics (STEM) disciplines. The most significant physical change to the Faculty’s infrastructure has seen new workshop and teaching and research spaces located in Science and Technology precinct under construction. Also includes Alumni news, input and output numbers Spatial Science discussion, Work Integrated Learning (WIL) in 2011, some key teaching administrative dates in 2011.
Resumo:
Multiple awards for Spatial/Surveying lecturer, raising entry quality and commencing numbers at QUT, Gardens Point rapt in promise of things to come, STEM building progress.
Resumo:
Summary of Spatial Sciences (Surveying) Student Prize Ceremony were recently held at The Old Government House - QUT Cultural Precinct. This short industry article briefly outlines the 15 student award descriptions and some photos of 2011 recipients and thanks industry sponsors.
Resumo:
Project as a Capstone Learning Unit: Courses of the QUT Faculty of BEE seek to enable students to practice as professionals in their respective disciplines. A major part of such practice is the instigation, management,monitoring, and reporting on an urban development project. This unit offers the student a capstone learning experience near the end of their fourth year of undergraduate study. Expose the student to a set of integrated activities, each building upon the preceding, and culminating in a 'completed' project. Students apply skills and knowledge attained earlier in the course and develop new abilities for application to a real-world problem, industry or research based, to simulate the design, development and management of a project solution. These 10-12minute seminar presentations comprise the mini-conference event that are of benefit to the wider surveying and spatial science industry. Additionally Includes MAPMYTOWN 2010, Bell Darling Downs, summary of QUT contributions.
Resumo:
The strain-induced self-assembly of suitable semiconductor pairs is an attractive natural route to nanofabrication. To bring to fruition their full potential for actual applications, individual nanostructures need to be combined into ordered patterns in which the location of each single unit is coupled with others and the surrounding environment. Within the Ge/Si model system, we analyze a number of examples of bottom-up strategies in which the shape, positioning, and actual growth mode of epitaxial nanostructures are tailored by manipulating the intrinsic physical processes of heteroepitaxy. The possibility of controlling elastic interactions and, hence, the configuration of self-assembled quantum dots by modulating surface orientation with the miscut angle is discussed. We focus on the use of atomic steps and step bunching as natural templates for nanodot clustering. Then, we consider several different patterning techniques which allow one to harness the natural self-organization dynamics of the system, such as: scanning tunneling nanolithography, focused ion beam and nanoindentation patterning. By analyzing the evolution of the dot assembly by scanning probe microscopy, we follow the pathway which leads to lateral ordering, discussing the thermodynamic and kinetic effects involved in selective nucleation on patterned substrates.
Resumo:
Many of the undergraduate and postgraduate programs of the former Faculty of Built Environment and Engineering PLUS Faculty of Sciences and Technology are changing as a result of merging these two large organisations, with some disciplines relocating to faculties of Creative Industries and Health respectively. The new STEM precinct under construction has begun rising from the proverbial hole-in-the-ground. Existing Surveying and Spatial Sciences programs, assets and staff are being repositioned with the newly formed School of Earth, Environment and Biological Sciences.2011. Golden graduates morning tea organised by QUT Alumni. Technology upgrades to the Mapping Sciences lab benefits 3-D learning experiences. Second and third-year students are undertaking Work Integrated Learning (WIL) over the summer vacation period. Final year students recently presented capstone project presentations at mini-conference in the Gibson Rooms overlooking a vibrant Southbank and sparkling Brisbane River. Discussion on end of year graduation ceremony held at QPAC.
Resumo:
campaign to oppose projects proposed in their local community. The social constructionist perspective advocates that these motivations are driven by activists’ interpretation of reality, such that activists will assign multiple meanings to and frame environmental issues in a way that reflects their view of reality. Past research suggest that these are also influenced by patterns of shared meaning and interpretation that develop over time in protest movements that shape activists’ perceptions of the environmental risks and impacts associated with construction activity. This paper explores the role of gender distinctions in shaping perceptions of environmental risk and how this affects their framing of the environmental, social, cultural/ historical impacts associated with a construction project. Using Snow and Benford’s (1988) 3-prong analytical tool for framing: diagnostic framing, prognostic framing and motivational framing, this paper presents findings from the content analysis of in-depth interviews of 24 activists protesting against a highly controversial housing project in the greater Sydney metropolitan area. The research adopts a single case study approach, and is particularly significant as it investigates an extensive and on-going community-based protest campaign (dating back almost 20 years) that has generated the longest standing 24-hour community picket in Australia.
Resumo:
The process of learning symbolic Arabic digits in early childhood requires that magnitude and spatial information integrates with the concept of symbolic digits. Previous research has separately investigated the development of automatic access to magnitude and spatial information from symbolic digits. However, developmental trajectories of symbolic number knowledge cannot be fully understood when considering components in isolation. In view of this, we have synthesized the existing lines of research and tested the use of both magnitude and spatial information with the same sample of British children in Years 1, 2 and 3 (6-8 years of age). The physical judgment task of the numerical Stroop paradigm (NSP) demonstrated that automatic access to magnitude was present from Year 1 and the distance effect signaled that a refined processing of numerical information had developed. Additionally, a parity judgment task showed that the onset of the Spatial-Numerical Association of Response Codes (SNARC) effect occurs in Year 2. These findings uncover the developmental timeline of how magnitude and spatial representations integrate with symbolic number knowledge during early learning of Arabic digits and resolve inconsistencies between previous developmental and experimental research lines.
Resumo:
Rats are superior to the most advanced robots when it comes to creating and exploiting spatial representations. A wild rat can have a foraging range of hundreds of meters, possibly kilometers, and yet the rodent can unerringly return to its home after each foraging mission, and return to profitable foraging locations at a later date (Davis, et al., 1948). The rat runs through undergrowth and pipes with few distal landmarks, along paths where the visual, textural, and olfactory appearance constantly change (Hardy and Taylor, 1980; Recht, 1988). Despite these challenges the rat builds, maintains, and exploits internal representations of large areas of the real world throughout its two to three year lifetime. While algorithms exist that allow robots to build maps, the questions of how to maintain those maps and how to handle change in appearance over time remain open. The robotic approach to map building has been dominated by algorithms that optimise the geometry of the map based on measurements of distances to features. In a robotic approach, measurements of distance to features are taken with range-measuring devices such as laser range finders or ultrasound sensors, and in some cases estimates of depth from visual information. The features are incorporated into the map based on previous readings of other features in view and estimates of self-motion. The algorithms explicitly model the uncertainty in measurements of range and the measurement of self-motion, and use probability theory to find optimal solutions for the geometric configuration of the map features (Dissanayake, et al., 2001; Thrun and Leonard, 2008). Some of the results from the application of these algorithms have been impressive, ranging from three-dimensional maps of large urban strucutures (Thrun and Montemerlo, 2006) to natural environments (Montemerlo, et al., 2003).