967 resultados para solid catalysts


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes an investigation on CuO and CuO-ZnO catalysts supported on CeO(2) and CeO(2)-La(2)O(3) oxides, which were designed for the low temperature water-gas shift reaction (WGSR). Bulk catalysts were prepared by co-precipitation of metal nitrates and characterized by energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD), surface area (by the BET method), X-ray photoelectron spectroscopy (XPS), and in situ X-ray absorption near edge structure (XANES). The catalysts` activities were tested in the forward WGSR, and the CuO/CeO(2) catalyst presented the best catalytic performance. The reasons for this are twofold: (1) the presence of Zn inhibits the interaction between Cu and Ce ions, and (2) lanthanum oxide forms a solid solution with cerium oxide, which will cause a decrease in the surface area of the catalysts. Also the CuO/CeO(2) catalyst presented the highest Cu content on the surface, which could influence its catalytic behavior. Additionally, the Cu and Cu(1+) species could influence the catalytic activity via a reduction-oxidation mechanism, corroborating to the best catalytic performance of the Cu/Ce catalyst. (c) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ni catalysts supported on gamma-Al(2)O(3) and Mg(Al)O were prepared with and without Rh as a promoter and tested in the reforming of methane in the presence of excess methane, simulating a model biogas. The effects of adding synthetic air on the methane conversion and the formation of carbon were assessed. The catalysts were characterized by X-ray spectroscopy (EDS), surface area (BET), X-ray diffraction (XRD), Temperature-programmed reduction (TPR), X-ray absorption near-edge structure (XANES) and XPD. The results showed that in catalysts without Rh, the Ni interacts strongly with the supports, showing high reduction temperatures in TPR tests. The addition of Rh increased the amount of reducible Ni and facilitated the reduction of the species interacting strongly with the support. In the catalytic tests, the samples promoted with Rh suffered higher carbon deposition. The in situ XPD suggested that on the support gamma-Al(2)O(3), the presence of Rh probably led to a segregation of Ni species with time on stream, leading to carbon deposition. On the support MgAlO, the presence of Rh improved the dispersion of Ni, by reducing the Ni(0) crystallite size, suggesting that in this case the carbon deposition was due to a favoring of CH(4) decomposition by Rh. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Supported nickel catalysts of composition Ni/Y(2)O(3)-ZrO(2) were synthesized in one step by the polymerization method and compared with a nickel catalyst prepared by wet impregnation. Stronger interactions were observed in the formed catalysts between NiO species and the oxygen vacancies of the Y(2)O(3)-ZrO(2) in the catalysts made by polymerization, and these were attributed to less agglomeration of the NiO during the synthesis of the catalysts in one step. The dry reforming of ethanol was catalyzed with a maximum CO(2) conversion of 61% on the 5NiYZ catalyst at 800 degrees C, representing a better response than for the catalyst of the same composition prepared by wet impregnation. (C) 2009 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Long and straight β-SiC nanowires are synthesized via the direct current arc discharge method with a mixture of silicon, graphite and silicon dioxide as the precursor. Detailed investigations with x-ray diffraction, scanning electron microscopy, energy dispersive x-ray spectroscopy, Raman scattering spectroscopy, transmission electron microscopy and selected area electron diffraction confirm that the β-SiC nanowires, which are about 100–200 nm in stem diameter and 10–20 µm in length, consist of a solid single-crystalline core along the (1 1 1) direction wrapped with an amorphous SiOx layer. A broad photoluminescence emission peak with a maximum at about 336 nm is observed at room temperature. A direct current arc plasma-assisted self-catalytic vapour–liquid–solid process is proposed as the growth mechanism of the β-SiC nanowires. This synthesis technique is capable of producing SiC nanowires free of metal contamination with a preferential growth direction and a high aspect ratio, without the designed addition of transition metals as catalysts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A clean, efficient and fast method for esterification reactions for sterically (biodiesels) or otherwise inactive (aromatic) precursors was developed, using catalysts supported in a solid phase under solvent free conditions, and whose reactions can be promoted by MW irradiation. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alcohols and acids can be switched to produce ethers or esters by varying the alcohol to catalyst mol ratio, in a new etherification and esterification method using NbCl5/Al2O3 catalyst under "solvent free" conditions and promoted by MW (microwave) irradiation. A "two sites" mechanism for the reaction is proposed, in an attempt to clarify the tendency of the catalyst to be dependent on the alcohol alone during the esterification process. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High efficiency gas turbine based systems, utility deregulation and more stringent environmental regulations strongly favor the use of natural gas over coal and other solid fuels in new electricity generators. Solid fuels could continue to compete, however, if a low cost gasifier fed by low cost feedstocks can be coupled with a gas turbine system. We examine on-site gasification of coal with other domestic fuels in an indirectly heated gasifier as a strategy to lower the costs of solid fuel systems. The systematics of gaseous pyrolysis yields assembled with the help of thermal measurement data and molecular models suggests blending carbonaceous fuels such as coal, coke or char with oxygenated fuels such as biomass, RDF, MSW, or dried sewage sludge. Such solid fuel blending can, with the help of inexpensive catalysts, achieve an optimum balance of volatiles, heating values and residual char thus reducing the technical demands upon the gasifier. Such simplifications should lower capital and operating costs of the gasifier to the mutual benefit of both solid fuel communities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article investigates a strain of the yeast Aureobasidium pullulans for cellulase and hemicellulase production in solid state fermentation. Among the substrates analyzed, the wheat bran culture presented the highest enzymatic production (1.05 U/mL endoglucanase, 1.3 U/mL β-glucosidase, and 5.0 U/mL xylanase). Avicelase activity was not detected. The optimum pH and temperature for xylanase, endoglucanase and β-glucosidase were 5.0 and 50, 4.5 and 60, 4.0 and 75°C, respectively. These enzymes remained stable between a wide range of pH. The β-glucosidase was the most thermostable enzyme, remaining 100% active when incubated at 75°C for 1 h. © 2007 Humana Press Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Catalysts containing mixtures of NiO, MgO and ZrO2 were synthesized by the polymerization method. They were characterized by X-ray diffraction (XRD), physisorption of N-2 (BET), X-ray photoelectron spectroscopy (XPS) and X-ray absorption near-edge structure (XANES), and then tested in the partial oxidation of methane (POM) in the presence of air (2CH(4):1O(2)) at 750 degrees C for 6 h. Among the ternary oxides, the catalyst with 40 mol% MgO showed the highest conversion rates in the catalytic processes, but also the highest carbon deposition values (48 mmol h (1)). The greater the amount of NiO-MgO solid solution formed, the higher was the conversion rate of reactants (CH4), peaking at 40 mol% of MgO. Catalysts with lower Ni content on the surface achieved a high rate of CH4 conversion into synthesis gas (H-2 + CO). The formation of more NiO-MgO solid solution seemed to inhibit the deactivation of Ni degrees during reaction. The values of the H-2/CO product ratio were generally found to be slightly lower than stoichiometric. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Catalysts containing 10%Co supported on CexZr1-xO2 (0 < x < 1) were applied to ethanol steam reforming reactions. The catalysts were characterized by Raman spectroscopy, XANES-H-2 and DRS-UV-Vis. The catalytic tests were conducted at 673, 773 and 873 K, with molar ratios of H2O:ethanol = 3:1. The ethanol conversion and H-2 selectivity were temperature dependent and the association of CeO2 with ZrO2 in the support led to show a low formation of CO, due to the higher mobility of oxygen. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PEM fuel cells seem to be the most affordable and commercially viable hydrogen-based cells, the biggest challenge being to obtain CO-free H-2 (<100 ppm) as the fuel. In this study, the use of CuO-CeO2 catalysts in preferential oxidation of CO to obtain CO-free H-2 (PROX reaction) was investigated. Ce1-xCuxO2 catalysts, with x (mol%) = 0, 0.01, 0.03, 0.05 and 0.10, were synthesized in one-step by the polymeric precursor method, to obtain a very fine dispersion and strong metal-support interaction, to favor active copper species and a preference for the PROX reaction. The results obtained from catalyzed reactions and characterization of the catalysts by XRD, Rietveld refinement, BET surface area, UV-Vis and TPR, suggest that this one-step synthesis method gives rise to catalysts with copper species selective for the PROX reaction, which reaches a maximum rate on Ce0.97Cu0.03O2 catalyst. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, catalysts containing 5 wt.% Ni deposited on a support composed of a CeO2-ZrO2 solid solution deposited on alumina were tested in the steam reforming of methane. The supports, with various ratios of Ce to Zr, were prepared by co-precipitation of the oxide precursors, followed by calcination in synthetic air. The catalysts were then prepared by Ni impregnation of the supports. The prepared solids were characterized by temperature-programmed reduction with H-2 (TPR-H-2), in situ X-ray diffraction (XRD) and X-ray absorption near-edge structure (XANES) spectroscopy. The XRD analysis confirmed the formation of a solid solution between ZrO2 and CeO2. In the catalytic tests, it was found that catalysts with higher Ce content did not exhibit deactivation during 6 h of reaction. The catalyst with highest Ce content, Ni(0.8Ce0.2Zr)AI, provided the best result, with the highest rate of conversion of methane and the lowest carbon deposition, which may be partly due to the smaller Ni-0 crystallites in this sample and also the segregated CeO2 particles may have favored H2O adsorption which could lead to higher C gasification. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The synthesis and characterization methods of metal nanoparticles (NPs) have advanced greatly in the last few decades, allowing an increasing understanding of structure-property-performance relationships. However, the role played by the ligands used as stabilizers for metal NPs synthesis or for NPs immobilization on solid supports has been underestimated. Here, we highlight some recent progress in the preparation of supported metal NPs with the assistance of ligands in solution or grafted on solid supports, a modified deposition-reduction method, with special attention to the effects on NPs size, metal-support interactions and, more importantly, catalytic activities. After presenting the general strategies in metal NP synthesis assisted by ligands grafted on solid supports, we highlight some recent progress in the deposition of pre-formed colloidal NPs on functionalized solids. Another important aspect that will be reviewed is related to the separation and recovery of NPs. Finally, we will outline our personal understanding and perspectives on the use of supported metal NPs prepared through ligand-assisted methods.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The role of the amount of Nb, used as a dopant for VPP, and how its presence may affect the generation of the active and selective δ-VOPO4 at the VPP surface under reaction conditions, was investigated, employing ex-situ and in-situ characterisation techniques. We found that Nb indeed may favour, under specific conditions, the generation of the desired δ-VOPO4 compound; however, its effect of enhancement of catalytic behaviour was not simply proportional to its concentration. In order to better understand how Nb may affect the generation of the active phase, we prepared V/Nb mixed phosphates; the formation of a solid solution was possible only under specific conditions, with a limited reciprocal dissolution of the two elements. We concluded that even though the incorporation of small amounts of Nb5+ in the VOPO4 (and also of V5+ in NbOPO4) cannot be excluded, a phenomenon which might favour the generation of the desired δ-VOPO4 compound, however the main role of Nb5+ was related to a modification of the redox properties of V4+ in the VPP, and specifically of the redox potential associated to the couple V4+/V5+. This led to a catalyst that during reaction was more oxidized than the corresponding undoped VPP, which under specific reaction conditions allowed obtain a better selectivity to MA. Oppositely, an excessive oxidation of VPP (catalysts having high [Nb]) affected negatively the MA selectivity, because of the excessive formation of COx. A preliminary study regarding the oxidehydration of 1-butanol into MA was carried out testing various catalysts: the best catalyst resulted VPP; however the MA selectivity was lower than that obtained from n-butane. With in-situ/operando Raman study of the Nb-doped and undoped catalysts we verified that the redox cycle involves the VPP and the δ-VOPO4 compounds, that the reoxidation step of V4+ in VPP is the rate-determining one.