966 resultados para sol-gel method


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Undoped x center dot alpha-Fe(2)O(3) y center dot CeO(2) and doped with praseodymium ceramic pigments were obtained by the sol-gel method after heat treatment at 800 degrees C for 2 h. These pigments were characterized by XRD, nitrogen adsorption, scanning electron microscopy, ultraviolet-visible absorption spectroscopy and colorimetrical measurements. Red and brown colors with several tonalities were observed after changes with Ce and Pr concentration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sol-gel method combined with a spin-coating technique has been successfully applied for the preparation of rare-earth doped silica:germania films used for the fabrication of erbium-doped waveguide amplifiers (EDWA), presenting several advantages over other methods for the preparation of thin films. As with other methods, the sol-gel route also shows some drawbacks, such as cracks related to the thickness of silica films and high hydrolysis rate of certain precursors such as germanium alkoxides. This article describes the preparation and optical characterization of erbium and ytterbium co-doped SiO2:GeO2 crack-free thick films prepared by the sol-gel route combined with a spin-coating technique using a chemically stable non-aqueous germanium oxide solution as an alternative precursor. The non-crystalline films obtained are planar waveguides exhibiting a single mode at 1,550 nm with an average thickness of 3.9 mu m presenting low percentages of porosity evaluated by the Lorentz-Lorenz Effective Medium Approximation, and low stress, according to the refractive index values measured in both transversal electric and magnetic polarizations. Weakly confining core layers (0.3% < Delta n < 0.75%) were obtained according to the refractive index difference between the core and buffer layers, suggesting that low-loss coupling EDWA may be obtained. The life time of the erbium I-4(13/2) metastable state was measured as a function of erbium concentration in different systems and based on these values it is possible to infer that the hydroxyl group was reduced and the formation of rare-earth clusters was avoided.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thin films of pure RuO2 and IrO2 and mixed Ru0.5Ir0.5O2 oxide modified with Pt particles were prepared by a sol-gel method in the form of thin films of similar to 2 mu m thickness on Ti substrates. Surface morphology of these Pt- modified oxides was examined by scanning electron microscopy and was found to exhibit a significant influence of the chemical composition of the oxide matrix. Element mapping showed homogeneous distribution of the metals. X- ray diffraction and X- ray photoelectron spectroscopy analyses showed that these films consist of metallic Pt particles dispersed in an oxide matrix. Cyclic voltammetry in acid solutions showed that the sol- gel prepared layers have relatively high Pt surface areas. The electrocatalytic activity of these materials toward the anodic oxidation of formaldehyde and methanol was compared in terms of onset potential and current density and was found to follow the sequence: Pt- Ru0.5Ir0.5O2/ Ti > Pt- RuO2/ Ti > Pt- IrO2/ Ti.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zinc oxide (ZnO) is an electroluminescent (EL) material that can emit light in different regions of electromagnetic spectrum when electrically excited. Since ZnO is chemically stable, inexpensive and environmentally friendly material, its EL property can be useful to construct solid-state lamps for illumination or as UV emitter. We present here two wet chemical methods to prepare ZnO thin-films: the Pechini method and the sol-gel method, with both methods resulting in crystalline and transparent films with transmittance > 85% at 550 nm. These films were used to make thin-film electroluminescent devices (TFELD) using two different insulator layers: lithium fluoride (LiF) or silica (SiO2). All the devices exhibit at least two wide emission bands in the visible range centered at 420 nm and at 380 nm attributed to the electronic defects in the ZnO optical band gap. Besides these two bands, the device using SiO2 and ZnO film obtained via sol-gel exhibits an additional band in the UV range centered at 350 nm which can be attributed to excitonic emission. These emission bands of ZnO can transfer their energy when a proper dopant is present. For the devices produced the voltage-current characteristics were measured in a specific range of applied voltage. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work reports on the preparation of erbium and ytterbium co-doped SiO2:HfO2 single mode planar waveguides using the sol-gel method. Silica nanoparticles were prepared from tetraethylorthosilicate in basic media and the films were characterized by transmission electron microscopy, scanning electron microscopy, mechanical profilometry, M-lines spectroscopy based on prism coupling technique, X-ray diffractometry, infrared spectroscopy and photoluminescence spectroscopy. The film thicknesses and the refractive indexes were adjusted in order to satisfy a future efficient coupling to single mode optical fiber. Films suitable for both weak and strong light confinement were prepared varying hafnia concentration into the silica matrix. The lifetime values of erbium I-4(13/2) state were measured in order to investigate the influence of clustering and hydroxyl groups on the fluorescence quantum efficiency of the I-4(13/2) level, responsible for the emission at 1.55 mu m attributed to the I-4(13/2) -> I-4(15/2) transition. The high lifetime values suggest the absence of erbium clusters and the elimination of hydroxyl groups by rapid thermal process. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work describes a modified sol-gel method for the preparation of V 2O 5/TiO 2 catalysts. The samples have been characterized by N 2 adsorption at 77K, x-ray diffractometry (XRD) and Fourier Transform Infrared (FT-IR). The surface area increases with the vanadia loading from 24 m 2 g -1, for pure TiO 2, to 87 m 2 g -1 for 9wt.% of V 2O 5. The rutile form is predominant for pure TiO 2 but became enriched with anatase phase when vanadia loading is increased. No crystalline V 2O 5 phase was observed in the catalysts diffractograms. Two species of surface vanadium observed by FT-IR spectroscopy a monomeric vanadyl and polymeric vanadates, the vanadyl/vanadate ratio remains practically constant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Erbium activated SiO2 -HfO2 planar waveguides, doped with Er3+ concentrations ranging from 0.01 to 4 mol%, were prepared by sol-gel method. The films were deposited on v-SiO2 and silica-on-silicon substrates using dip-coating technique. The waveguides show high densification degree, effective intermingling of the two film components, and uniform surface morphology. The waveguide deposited on silica-on-silicon substrates shows one single propagation mode at 1.5μm, with a confinement coefficient of 0.81 and an attenuation coefficient of 0.8 dB/cm at 632.8nm. Emission in the C-telecommunication band was observed at room temperature for all the samples upon continuouswave excitation at 980 nm or 514.5 nm. The shape of the emission band corresponding to the 4I13/2 → 4I15/2 transition is found to be almost independent both on erbium content and excitation wavelength, with a FWHM between 44 and 48 nm. The 4I13/2 level decay curves presented a single-exponential profile, with a lifetime ranging between 1.1 - 6.6 ms, depending on the erbium concentration. Infrared to visible upconversion luminescence upon continuous-wave excitation at 980 nm was observed for all the samples. Channel waveguide in rib configuration was obtained by etching the active film in order to have a well confined mode at 1.5 μm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of pH during hydrolysis of titanium(IV) isopropoxide on the morphological and electronic properties of TiO2 nanoparticles prepared by the sol-gel method is investigated and correlated to the photoelectrochemical parameters of dye-sensitized solar cells (DSCs) based on TiO2 films. Nanoparticles prepared under acid pH exhibit smaller particle size and higher surface area, which result in higher dye loadings and better short-circuit current densities than DSCs based on alkaline TiO2-processed films. On the other hand, the product of charge collection and separation quantum yields in films with TiO2 obtained by alkaline hydrolysis is c. a. 27% higher than for the acid TiO2 films. The combination of acid and alkaline TiO2 nanoparticles as mesoporous layer in DSCs results in a synergic effect with overall efficiencies up to 6.3%, which is better than the results found for devices employing one of the nanoparticles separately. These distinct nanoparticles can be also combined by using the layer-by-layer technique (LbL) to prepare compact TiO2 films applied before the mesoporous layer. DSCs employing photoanodes with 30 TiO2 bilayers have shown efficiencies up to 12% higher than the nontreated photoanode ones. These results can be conveniently used to develop optimized synthetic procedures of TiO2 nanoparticles for several dye-sensitized solar cell applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The atomic scale structure of sodium borophosphates made by the sol-gel method is compared to those made by the melt-quench method. It is found that although the sol-gel generated materials have a higher tendency towards crystallization, they nevertheless show a qualitatively similar crystallization trend with composition to their melt-quench analogues; the progressive introduction of boron oxide into the phosphate network initially inhibits then promotes crystallization. At the composition associated with the most stable amorphous sodium borophosphate (20 mol% boron oxide), it is found that the atomic scale structure of the sol-gel synthesized network glass is almost identical to that of the corresponding melt-quenched one.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Harnessing the power of nuclear reactions has brought huge benefits in terms of nuclear energy, medicine and defence as well as risks including the management of nuclear wastes. One of the main issues for radioactive waste management is liquid radioactive waste (LRW). Different methods have been applied to remediate LRW, thereunder ion exchange and adsorption. Comparative studies have demonstrated that Na2Ti2O3SiO4·2H2O titanosilicate sorption materials are the most promising in terms of Cs+ and Sr2+ retention from LRW. Therefore these TiSi materials became the object of this study. The recently developed in Ukraine sol-gel method of synthesizing these materials was chosen among the other reported approaches since it allows obtaining the TiSi materials in the form of particles with size ≥ 4mm. utilizing inexpensive and bulk stable inorganic precursors and yielded the materials with desirable properties by alteration of the comparatively mild synthesis conditions. The main aim of this study was to investigate the physico-chemical properties of sol-gel synthesized titanosilicates for radionuclide uptake from aqueous solutions. The effect of synthesis conditions on the structural and sorption parameters of TiSi xerogels was planned to determine in order to obtain a highly efficient sorption material. The ability of the obtained TiSis to retain Cs+, Sr2+ and other potentially toxic metal cations from the synthetic and real aqueous solutions was intended to assess. To our expectations, abovementioned studies will illustrate the efficiency and profitability of the chosen synthesis approach, synthesis conditions and the obtained materials. X-ray diffraction, low temperature adsorption/desorption surface area analysis, X-ray photoelectron spectroscopy, infrared spectroscopy and scanning electron microscopy with energy dispersive X-ray spectroscopy was used for xerogels characterization. The sorption capability of the synthesized TiSi gels was studied as a function of pH, adsorbent mass, initial concentration of target ion, contact time, temperature, composition and concentration of the background solution. It was found that the applied sol-gel approach yielded materials with a poorly crystalline sodium titanosilicate structure under relatively mild synthesis conditions. The temperature of HTT has the strongest influence on the structure of the materials and consequently was concluded to be the control factor for the preparation of gels with the desired properties. The obtained materials proved to be effective and selective for both Sr2+ and Cs+ decontamination from synthetic and real aqueous solutions like drinking, ground, sea and mine waters, blood plasma and liquid radioactive wastes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-k TiO2 thin film on p-type silicon substrate was fabricated by a combined sol-gel and spin coating method. Thus deposited titania film had anatase phase with a small grain size of 16 nm and surface roughness of congruent to 0.6 nm. The oxide capacitance (C-ox), flat band capacitance (C-FB), flat band voltage (V-FB), oxide trapped charge (Q(ot)), calculated from the high frequency (1 MHz) C-V curve were 0.47 nF, 0.16 nF, -0.91 V, 4.7x10(-12) C, respectively. As compared to the previous reports, a high dielectric constant of 94 at 1 MHz frequency was observed in the devices investigated here and an equivalent oxide thickness (EOT) was 4.1 nm. Dispersion in accumulation capacitance shows a linear relationship with AC frequencies. Leakage current density was found in acceptable limits (2.1e-5 A/cm(2) for -1 V and 5.7e-7 A/cm(2) for +1 V) for CMOS applications.