970 resultados para small-signal angular stability
Resumo:
The stability of a steadily propagating planar premixed flame has been the subject of numerous studies since Darrieus and Landau showed that in their model flames are unstable to perturbations of any wavelength. Moreover, the instability was shown to persist even for very small wavelengths, i.e. there was no high-wavenumber cutoff of the instability. In addition to the Darrieus-Landau instability, which results from thermal expansion, analysis of the diffusional thermal model indicates that premixed flames may exhibit cellular and pulsating instabilities as a consequence of preferential diffusion. However, no previous theory captured all the instabilities including a high-wavenumber cutoff for each. In Class, Matkowsky & Klimenko (2003) a unified theory is proposed which, in appropriate limits and under appropriate assumptions, recovers all the relevant previous theories. It also includes additional new terms, not present in previous theories. In the present paper we consider the stability of a uniformly propagating planar flame as a solution of the unified model. The results are then compared to those based on the models of Darrieus-Landau, Sivashinsky and Matalon-Matkowsky. In particular, it is shown that the unified model is the only model to capture the Darrieus-Landau, cellular and pulsating instabilities including a high-wavenumber cutoff for each.
Resumo:
This study evaluated the degree to which the disturbance to posture from respiration is compensated for in healthy normals and whether this is different in people with recurrent low back pain (LBP), and to compare the changes when respiratory demand is increased. Angular displacement of the lumbar spine and hips, and motion of the centre of pressure (COP), were recorded with high resolution and respiratory phase was recorded from ribcage motion. With subjects standing in a relaxed posture, recordings were made during quiet breathing, while breathing with increased dead-space to induce hypercapnoea, and while subjects voluntarily increased their respiration to match ribcage expansion that was induced in the hypercapnoea condition. The relationship between respiration and the movement parameters was measured from the coherence between breathing and COP and angular motion at the frequency of respiration, and from averages triggered from the respiratory data. Small angular changes in the lumbopelvic and hip angles were evident at the frequency of respiration in both groups. However, in quiet standing, the LBP subjects had a greater displacement of their COP that was associated with respiration than the control subjects. The LBP group had a trend for less hip motion. There were no changes in the movement parameters when respiratory demand increased involuntarily via hypercapnoea, but when respiration increased voluntarily, the amplitude of motion and the displacement of the COP increased in both groups. The present data suggest that the postural compensation to respiration counteracts at least part of the disturbance to posture caused by respiration and that this compensation may be less effective in people with LBP.
Resumo:
Activated sludge samples from seven full-scale plants were investigated in order to determine the relationship between floc structure and floc stability. Floc stability was determined by shear sensitivity and floc strength. Floc structure was considered in terms of two size scales, the micro- and macrostructure. The microstructure refers to the organization of the floc components, such as the individual microorganisms. The macrostructure refers to the overall floc. The floc macrostructure was characterized by filament index, sludge volume index, size, and fractal dimension. It had a significant impact on floc stability. Large and open floes with low fractal dimensions containing large number of filaments were more shear sensitive and had lower floc strength compared to small and dense floes. Fluorescent in situ hybridization analysis indicated that the organization of the bacterial cells might also have an effect on the floc stability. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Sliding mode controllers for power converters usually employ hysteresis comparators to directly generate the power semiconductors switching states. This paper presents a new sliding mode modulator based on the direct implementation of the sliding mode stability condition, which for multilevel power converters shows advantages, as branch equalized switching frequencies and less distortion on the ac currents when operating near the rated converter power. The new sliding mode multilevel modulator is used to control a three-phase multilevel converter, operated as a reactive power compensator (STATCOM), implementing the stability condition in a digital signal processing system. The performance of this new sliding mode modulator is compared with a multilevel modulator based on hysteresis comparators. Simulation and experimental results are presented in order to highlight the system operation and control robustness.
Resumo:
Ballet gestures are highly non-anatomical and physiological, leading to compensatory behaviors. The knee joint is most affected by this behavior, leading to an increase risk of injury. Our purpose is to describe the knee angular displacement in amateur dancers, during a demi-plié exercise, with emphasis on valgus mechanisms frequency. Methods: 192 demi-pliés collected in six amateur female dancers (mean age = 15.33 ± 1.37 years), were analyzed regarding sagittal and frontal plane angular displacement, with an electrogoniometer connected to a signal acquisition unit at 1000 Hz. Results: all subjects presented valgus peaks along the trials, despite the global varus tendency of the knee frontal plane behavior. A significant positive correlation between the frequency of valgus and practice time was noted. Discussion: A variable angular frontal displacement was observed, with some trials comprehending a high incidence of valgus peaks along the ascending or descending phase of the demi-plié exercise. Conclusion: the frontal knee angle behavior is variable. It may present fast peaks of valgus or an initial trend of varus/valgus that is different from the global varus trend. The analysis of the activity should be considered in the training. The practice time may be related to the observed behavior.
Resumo:
Debugging electronic circuits is traditionally done with bench equipment directly connected to the circuit under debug. In the digital domain, the difficulties associated with the direct physical access to circuit nodes led to the inclusion of resources providing support to that activity, first at the printed circuit level, and then at the integrated circuit level. The experience acquired with those solutions led to the emergence of dedicated infrastructures for debugging cores at the system-on-chip level. However, all these developments had a small impact in the analog and mixed-signal domain, where debugging still depends, to a large extent, on direct physical access to circuit nodes. As a consequence, when analog and mixed-signal circuits are integrated as cores inside a system-on-chip, the difficulties associated with debugging increase, which cause the time-to-market and the prototype verification costs to also increase. The present work considers the IEEE1149.4 infrastructure as a means to support the debugging of mixed-signal circuits, namely to access the circuit nodes and also an embedded debug mechanism named mixed-signal condition detector, necessary for watch-/breakpoints and real-time analysis operations. One of the main advantages associated with the proposed solution is the seamless migration to the system-on-chip level, as the access is done through electronic means, thus easing debugging operations at different hierarchical levels.
Resumo:
The associated production of a Higgs boson and a top-quark pair, t (t) over barH, in proton-proton collisions is addressed in this paper for a center of mass energy of 13 TeV at the LHC. Dileptonic final states of t (t) over barH events with two oppositely charged leptons and four jets from the decays t -> bW(+) -> bl(+)v(l), (t) over bar -> (b) over barW(-) -> (b) over barl(-)(v) over bar (l) and h -> b (b) over bar are used. Signal events, generated with MadGraph5_aMC@NLO, are fully reconstructed by applying a kinematic fit. New angular distributions of the decay products as well as angular asymmetries are explored in order to improve discrimination of t (t) over barH signal events over the dominant irreducible background contribution, t (t) over barb (b) over bar. Even after the full kinematic fit reconstruction of the events, the proposed angular distributions and asymmetries are still quite different in the t (t) over barH signal and the dominant background (t (t) over barb (b) over bar).
Resumo:
Thesis presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Electrical and Computer Engineering by the Universidade Nova de Lisboa,Faculdade de Ciências e Tecnologia
Resumo:
Dissertation presented to obtain the PhD degree in Biochemistry
Resumo:
Dissertação apresentada para obtenção do Grau de Doutor em Biologia, na especialidade de Genética Molecular, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
The Role of Small RNAs and Ribonucleases in the Control of Gene Expression in Salmonella Typhimurium
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology
Resumo:
The associated production of a Higgs boson and a top-quark pair, tt¯H, in proton-proton collisions is addressed in this paper for a center of mass energy of 13TeV at the LHC. Dileptonic final states of tt¯H events with two oppositely charged leptons and four jets from the decays t→bW+→bℓ+νℓ, t¯→b¯W−→b¯ℓ−ν¯ℓ and h→bb¯, are used. Signal events, generated with MadGraph5_aMC@NLO, are fully reconstructed by applying a kinematic fit. New angular distributions of the decay products as well as angular asymmetries are explored in order to improve discrimination of tt¯H signal events over the dominant irreducible background contribution, tt¯bb¯. Even after the full kinematic fit reconstruction of the events, the proposed angular distributions and asymmetries are still quite different in the tt¯H signal and the dominant background (tt¯bb¯).
Resumo:
Dissertação de mestrado integrado em Engenharia Biomédica (área de especialização em Eletrónica Médica)
Resumo:
Introduction: Coordination is a strategy chosen by the central nervous system to control the movements and maintain stability during gait. Coordinated multi-joint movements require a complex interaction between nervous outputs, biomechanical constraints, and pro-prioception. Quantitatively understanding and modeling gait coordination still remain a challenge. Surgeons lack a way to model and appreciate the coordination of patients before and after surgery of the lower limbs. Patients alter their gait patterns and their kinematic synergies when they walk faster or slower than normal speed to maintain their stability and minimize the energy cost of locomotion. The goal of this study was to provide a dynamical system approach to quantitatively describe human gait coordination and apply it to patients before and after total knee arthroplasty. Methods: A new method of quantitative analysis of interjoint coordination during gait was designed, providing a general model to capture the whole dynamics and showing the kinematic synergies at various walking speeds. The proposed model imposed a relationship among lower limb joint angles (hips and knees) to parameterize the dynamics of locomotion of each individual. An integration of different analysis tools such as Harmonic analysis, Principal Component Analysis, and Artificial Neural Network helped overcome high-dimensionality, temporal dependence, and non-linear relationships of the gait patterns. Ten patients were studied using an ambulatory gait device (Physilog®). Each participant was asked to perform two walking trials of 30m long at 3 different speeds and to complete an EQ-5D questionnaire, a WOMAC and Knee Society Score. Lower limbs rotations were measured by four miniature angular rate sensors mounted respectively, on each shank and thigh. The outcomes of the eight patients undergoing total knee arthroplasty, recorded pre-operatively and post-operatively at 6 weeks, 3 months, 6 months and 1 year were compared to 2 age-matched healthy subjects. Results: The new method provided coordination scores at various walking speeds, ranged between 0 and 10. It determined the overall coordination of the lower limbs as well as the contribution of each joint to the total coordination. The difference between the pre-operative and post-operative coordination values were correlated with the improvements of the subjective outcome scores. Although the study group was small, the results showed a new way to objectively quantify gait coordination of patients undergoing total knee arthroplasty, using only portable body-fixed sensors. Conclusion: A new method for objective gait coordination analysis has been developed with very encouraging results regarding the objective outcome of lower limb surgery.
Resumo:
The assessment of yellow fever vaccine thermostability both in lyophilized form and after reconstitution were analyzed. Two commercial yellow fever vaccines were assayed for their thermal stability. Vaccines were exposed to test temperatures in the range of 8 (graus) C to 45 (graus) C. Residual infectivity was measured by a plaque assay using Vero cells. The titre values were used in an accelerated degradation test that follows the Arrhenius equation and the minimum immunizing dose was assumed to be 10 (ao cubo) particles forming unit (pfu)/dose. Some of the most relevant results include that (i) regular culture medium show the same degradation pattern of a reconstituted 17D-204 vaccine; (ii) reconstituted YF-17D-204 showed a predictable half life of more than six days if kept at 0 (graus) C; (iii) there are differences in thermostability between different products that are probably due to both presence of stabilizers in the preparation and the modernization in the vaccine production; (iv) it is important to establish a proper correlation between the mouse infectivity test and the plaque assay since the last appears to be more simple, economical, and practical for small laboratories to assess the potency of the vaccine, and (v) the accelerated degradation test appears to be the best procedure to quantify the thermostability of biological products.