877 resultados para small firm management and growth


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the recovery rates for Thalassia testudinum measured in this study for scars of these excavation depths and assuming a linear recovery horizon, we estimate that it would take ~ 6.9 years (95% CI. = 5.4 to 9.6 years) for T. testudinum to return to the same density as recorded for the adjacent undisturbed population. The application of water soluble fertilizers and plant growth hormones by mechanical injection into the sediments adjacent to ten propellor scars at Lignumvitae State Botanical Site did not significantly increase the recovery rate of Thalassia testudinum or Halodule wrightii. An alternative method of fertilization and restoration of propellor scars was also tested by a using a method of “compressed succession” where Halodule wrightii is substituted for T. testudinum in the initial stages of restoration. Bird roosting stakes were placed among H.wrightii bare root plantings in prop scars to facilitate the defecation of nitrogen and phosphorus enriched feces. In contrast to the fertilizer injection method, the bird stakes produced extremely high recovery rates of transplanted H. wrightii. We conclude that use of a fertilizer/hormone injection machine in the manner described here is not a feasible means of enhancing T. testudinum recovery in propellor scars on soft bottom carbonate sediments. Existing techniques such as the bird stake approach provide a reliable, and inexpensive alternative method that should be considered for application to restoration of seagrasses in these environments. Document contains 40 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seasonal surveys were conducted during 1998–1999 in Baja California, Baja California Sur, Sonora, and Sinaloa to determine the extent and activities of artisanal elasmobranch fisheries in the Gulf of California. One hundred and forty–seven fishing sites, or camps, were documented, the majority of which (n = 83) were located in Baja California Sur. Among camps with adequate fisheries information, the great majority (85.7%) targeted elasmobranchs during some part of the year. Most small, demersal sharks and rays were landed in mixed species fisheries that also targeted demersal teleosts, but large sharks were usually targeted in directed drift gillnet or, to a lesser extent, surface longline fisheries. Artisanal fishermen were highly opportunistic, and temporally switched targets depending on the local productivity of teleost, invertebrate, and elasmobranch fishery resources. Major fisheries for small sharks (< 1.5 m, “cazón”) were documented in Baja California during spring, in Sonora during autumn–spring, and in Sinaloa during winter and spring. Triakid sharks (Mustelus spp.) dominated cazón landings in the northern states, whereas juvenile scalloped hammerheads (Sphyrna lewini) primarily supported the fishery in Sinaloa. Large sharks (> 1.5 m, “tiburón”) were minor components of artisanal elasmobranch fisheries in Sonora and Sinaloa, but were commonly targeted during summer and early autumn in Baja California and Baja California Sur. The pelagic thresher shark (Alopias pelagicus) and silky shark (Carcharhinus falciformis) were most commonly landed in Baja California, whereas a diverse assemblage of pelagic and large coastal sharks was noted among Baja California Sur landings. Rays dominated summer landings in Baja California and Sinaloa, when elevated catch rates of the shovelnose guitarfish (Rhinobatos productus, 13.2 individuals/vessel/trip) and golden cownose ray (Rhinoptera steindachneri, 11.1 individuals/vesse/trip) primarily supported the respective fisheries. The Sonoran artisanal elasmobranch fishery was the most expansive recorded during this study, and rays (especially R. productus) dominated spring and summer landings in this state. Seasonal catch rates of small demersal sharks and rays were considerably greater in Sonora than in other surveyed states. Many tiburón populations (e.g., C. leucas, C. limbatus, C. obscurus, Galeocerdo cuvier) have likely been overfished, possibly shifting effort towards coastal populations of cazón and rays. Management recommendations, including conducting demographic analyses using available life history data, determining and protecting nursery areas, and enacting seasonal closures in areas of elasmobranch aggregation (e.g., reproduction, feeding), are proposed. Without effective, enforceable management to sustain or rebuild targeted elasmobranch populations in the Gulf of California, collapse of many fisheries is a likely outcome. (PDF contains 243 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atlantic and Gulf Coast shorelines include some of the most unique and biologically rich ecosystems in the United States that provide immeasurable aesthetic, habitat and economic benefits. Natural coastal ecosystems, however, are under increasing threat from rampant and irresponsible growth and development. Once a boon to local economies, complex natural forces – enhanced by global climate change and sea level rise - are now considered hazards and eroding the very foundation upon which coastal development is based. For nearly a century, beach restoration and erosion control structures have been used to artificially stabilize shorelines in an effort to protect structures and infrastructure. Beach restoration, the import and emplacement of sand on an eroding beach, is expensive, unpredictable, inefficient and may result in long-term environmental impacts. The detrimental environmental impacts of erosion control structures such as sea walls, groins, bulkheads and revetments include sediment deficits, accelerated erosion and beach loss. These and other traditional responses to coastal erosion and storm impacts- along with archaic federal and state policies, subsidies and development incentives - are costly, encourage risky development, artificially increase property values of high-risk or environmentally sensitive properties, reduce the post-storm resilience of shorelines, damage coastal ecosystems and are becoming increasingly unsustainable. Although communities, coastal managers and property owners face increasingly complex and difficult challenges, there is an emerging public, social and political awareness that, without meaningful policy reforms, coastal ecosystems and economies are in jeopardy. Strategic retreat is a sustainable, interdisciplinary management strategy that supports the proactive, planned removal of vulnerable coastal development; reduces risk; increases shoreline resiliency and ensures long term protection of coastal systems. Public policies and management strategies that can overcome common economic misperceptions and promote the removal of vulnerable development will provide state and local policy makers and coastal managers with an effective management tool that concomitantly addresses the economic, environmental, legal and political issues along developed shorelines. (PDF contains 4 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atlantic and Gulf Coast shorelines include some of the most unique and biologically rich ecosystems in the United States that provide immeasurable aesthetic, habitat and economic benefits. Natural coastal ecosystems, however, are under increasing threat from rampant and irresponsible growth and development. Once a boon to local economies, complex natural forces – enhanced by global climate change and sea level rise - are now considered hazards and eroding the very foundation upon which coastal development is based. For nearly a century, beach restoration and erosion control structures have been used to artificially stabilize shorelines in an effort to protect structures and infrastructure. Beach restoration, the import and emplacement of sand on an eroding beach, is expensive, unpredictable, inefficient and may result in long-term environmental impacts. The detrimental environmental impacts of erosion control structures such as sea walls, groins, bulkheads and revetments include sediment deficits, accelerated erosion and beach loss. These and other traditional responses to coastal erosion and storm impacts- along with archaic federal and state policies, subsidies and development incentives - are costly, encourage risky development, artificially increase property values of high-risk or environmentally sensitive properties, reduce the post-storm resilience of shorelines, damage coastal ecosystems and are becoming increasingly unsustainable. Although communities, coastal managers and property owners face increasingly complex and difficult challenges, there is an emerging public, social and political awareness that, without meaningful policy reforms, coastal ecosystems and economies are in jeopardy. Strategic retreat is a sustainable, interdisciplinary management strategy that supports the proactive, planned removal of vulnerable coastal development; reduces risk; increases shoreline resiliency and ensures long term protection of coastal systems. Public policies and management strategies that can overcome common economic misperceptions and promote the removal of vulnerable development will provide state and local policy makers and coastal managers with an effective management tool that concomitantly addresses the economic, environmental, legal and political issues along developed shorelines. (PDF contains 4 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this report we develop age-length keys and derive age-frequency data. We estimate striped bass and white perch mortality and growth rates, based on the otolith-aging analysis. We also report on hatch-date frequencies of striped bass and white perch larvae, and we discuss environmental effects on recruitment potential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hatchling American Alligators (Alligator mississippiensis) produced from artificially incubated wild eggs were returned to their natal areas (repatriated). We compared artificially incubated and repatriated hatchlings released within and outside the maternal alligator’s home range with naturally incubated hatchlings captured and released within the maternal alligator’s home range on Lake Apopka, Lake Griffin, and Orange Lake in Florida. We used probability of recapture and total length at approximately nine months after hatching as indices of survival and growth rates. Artificially incubated hatchlings released outside of the maternal alligator’s home range had lower recapture probabilities than either naturally incubated hatchlings or artificially incubated hatchlings released near the original nest site. Recapture probabilities of other treatments did not differ significantly. Artificially incubated hatchlings were approximately 6% shorter than naturally incubated hatchlings at approximately nine months after hatching. We concluded that repatriation of hatchlings probably would not have long-term effects on populations because of the resiliency of alligator populations to alterations of early age-class survival and growth rates of the magnitude that we observed. Repatriation of hatchlings may be an economical alternative to repatriation of older juveniles for population restoration. However, the location of release may affect subsequent survival and growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

English: Food selection of first-feeding yellowfin tuna larvae was studied in the laboratory during October 1992. The larvae were hatched from eggs obtained by natural spawning of yellowfin adults held in sea pens adjacent to Ishigaki Island, Okinawa Prefecture, Japan. The larvae were fed mixed-prey assemblages consisting of size-graded wild zooplankton and cultured rotifers. Yellowfin larvae were found to be selective feeders during the first four days of feeding. Copepod nauplii dominated the diet numerically, by frequency of occurrence and by weight. The relative importance of juvenile and adult copepods (mostly cyclopoids) in the diet increased over the 4-day period. Rotifers, although they comprised 31 to 40 percent of the available forage, comprised less than 2.1 percent of the diet numerically. Prey selection indices were calculated taking into account the relative abundances of prey, the swimming speeds of yellowfin larvae and their prey, and the microscale influence of turbulence on encounter rates. Yellowfin selected for copepod nauplii and against rotifers, and consumed juvenile and adult copepods in proportion to their abundances. Yellowfin larvae may select copepod nauplii and cyclopoid juveniles and adults based on the size and discontinuous swimming motion of these prey. Rotifers may not have been selected because they were larger or because they exhibit a smooth swimming pattern. The best initial diet for the culture of yellowfin larvae may be copepod nauplii and cyclopoid juveniles and adults, due to the size, swimming motion, and nutritional content of these prey. If rotifers alone are fed to yellowfin larvae, the rotifers should be enriched with a nutritional supplement that is high in unsaturated fatty acids. Mouth size of yellowfin larvae increases rapidly within the first few days of feeding, which minimizes limitations on feeding due to prey size. Although yellowfin larvae initiate feeding on relatively small prey, they rapidly acquire the ability to add relatively large, rare prey items to the diet. This mode of feeding may be adaptive for the development of yellowfin larvae, which have high metabolic rates and live in warm mixed-layer habitats of the tropical and subtropical Pacific. Our analysis also indicates a strong potential for the influence of microscale turbulence on the feeding success of yellowfin larvae. --- Experiments designed to validate the periodicity of otolith increments and to examine growth rates of yellowfin tuna larvae were conducted at the Japan Sea-Farming Association’s (JASFA) Yaeyama Experimental Station, Ishigaki Island, Japan, in September 1992. Larvae were reared from eggs spawned by captive yellowfin enclosed in a sea pen in the bay adjacent to Yaeyama Station. Results indicate that the first increment is deposited within 12 hours of hatching in the otoliths of yellowfin larvae, and subsequent growth increments are formed dailyollowing the first 24 hours after hatching r larvae up to 16 days of age. Somatic and otolith gwth ras were examined and compared for yolksac a first-feeding larvae reared at constant water tempatures of 26�and 29°C. Despite the more rapid develo of larvae reared at 29°C, growth rates were nnificaifferent between the two treatments. Howeve to poor survival after the first four days, it was ssible to examine growth rates beyond the onset of first feeding, when growth differences may become more apparent. Somatic and otolith growth were also examined for larvae reared at ambient bay water temperatures during the first 24 days after hatching. timates of laboratory growth rates were come to previously reported values for laboratory-reared yelllarvae of a similar age range, but were lower than growth rates reported for field-collected larvae. The discrepancy between laboratory and field growth rates may be associated with suboptimal growth conditions in the laboratory. Spanish: Durante octubre de 1992 se estudió en el laboratorio la seleccalimento por larvaún aleta amarillmera alimentación. Las larvas provinieron de huevos obtenidosel desove natural de aletas amarillas adultos mantenidos en corrales marinos adyacentes a la Isla Ishigaki, Prefectura de Okinawa (Japón). Se alimentó a las larvas con presas mixtas de zooplancton silvestre clasificado por tamaño y rotíferos cultivados. Se descubrió que las larvas de aleta amarilla se alimentan de forma selectiva durante los cuatro primeros días de alimentación. Los nauplios de copépodo predominaron en la dieta en número, por frecuencia de ocurrencia y por peso. La importancia relativa de copépodos juveniles y adultos (principalmente ciclopoides) en la dieta aumentó en el transcurso del período de 4 días. Los rotíferos, pese a que formaban del 31 al 40% del alimento disponible, respondieron de menos del 2,1% de la dieta en número. Se calcularon índices de selección de presas tomando en cuenta la abundancia relativa de las presas, la velocidad de natación de las larvas de aleta amarilla y de sus presas, y la influencia a microescala de la turbulencia sobre las tasas de encuentro. Los aletas amarillas seleccionaron a favor de nauplios de copépodo y en contra de los rotíferos, y consumieron copépodos juveniles y adultos en proporción a su abundancia. Es posible que las larvas de aleta amarilla seleccionen nauplios de copépodo y ciclopoides juveniles y adultos con base en el tamaño y movimiento de natación discontinuo de estas presas. Es posible que no se hayan seleccionado los rotíferos a raíz de su mayor tamaño o su patrón continuo de natación. Es posible que la mejor dieta inicial para el cultivo de larvas de aleta amarilla sea nauplios de copépodo y ciclopoides juveniles y adultos, debido al tamaño, movimiento de natación, y contenido nutritivo de estas presas. Si se alimenta a las larvas de aleta amarilla con rotíferos solamente, se debería enriquecerlos con un suplemento nutritivo rico en ácidos grasos no saturados. El tamaño de la boca de las larvas de aleta amarilla aumenta rápidamente en los primeros pocos días de alimentación, reduciendo la limitación de la alimentación debida al tamaño de la presa. Pese a que las larvas de aleta amarilla inician su alimentación con presas relativamente pequeñas, se hacen rápidamente capaces de añadir presas relativamente grandes y poco comunes a la dieta. Este modo de alimentación podría ser adaptivo para el desarrollo de larvas de aleta amarilla, que tienen tasa metabólicas altas y viven en hábitats cálidos en la capa de mezcla en el Pacífico tropical y subtropical. Nuestro análisis indica también que la influencia de turbulencia a microescala es potencialmente importante para el éxito de la alimentación de las larvas de aleta amarilla. --- En septiembre de 1992 se realizaron en la Estación Experimental Yaeyama de la Japan Sea- Farming Association (JASFA) en la Isla Ishigaki (Japón) experimentos diseñados para validar la periodicidad de los incrementos en los otolitos y para examinar las tasas de crecimiento de las larvas de atún aleta amarilla. Se criaron las larvas de huevos puestos por aletas amarillas cautivos en un corral marino en la bahía adyacente a la Estación Yaeyama. Los resultados indican que el primer incremento es depositado menos de 12 horas después de la eclosión en los otolitos de las larvas de aleta amarilla, y que los incrementos de crecimiento subsiguientes son formados a diario a partir de las primeras 24 horas después de la eclosión en larvas de hasta 16 días de edad. Se examinaron y compararon las tasas de crecimiento somático y de los otolitos en larvas en las etapas de saco vitelino y de primera alimentación criadas en aguas de temperatura constante entre 26°C y 29°C. A pesar del desarrollo más rápido de las larvas criadas a 29°C, las tasas de crecimiento no fueron significativamente diferentes entre los dos tratamientos. Debido a la mala supervivencia a partir de los cuatro primeros días, no fue posibación, uando las diferencias en el crecimiento podrían hacerse más aparentes. Se examinó también el crecimiento somático y de los otolitos para larvas criadas en temperaturas de agua ambiental en la bahía durante los 24 días inmediatamente después de la eclosión. Nuestras estimaciones de las tasas de crecimiento en el laboratorio fueron comparables a valores reportados previamente para larvas de aleta amarilla de edades similares criadas en el laboratorio, pero más bajas que las tasas de crecimiento reportadas para larvas capturadas en el mar. La discrepancia entre las tasas de crecimiento en el laboratorio y el mar podría estar asociada con condiciones subóptimas de crecimiento en el lab

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ten growth models were fitted to age and growth data for spiny dogfish (Squalus acanthias) in the Gulf of Alaska. Previous studies of spiny dogfish growth have all fitted the t0 formulation of the von Bertalanffy model without examination of alternative models. Among the alternatives, we present a new two-phase von Bertalanffy growth model formulation with a logistically scaled k parameter and which estimates L0. A total of 1602 dogfish were aged from opportunistic collections with longline, rod and reel, set net, and trawling gear in the eastern and central Gulf of Alaska between 2004 and 2007. Ages were estimated from the median band count of three independent readings of the second dorsal spine plus the estimated number of worn bands for worn spines. Owing to a lack of small dogfish in the samples, lengths at age of small individuals were back-calculated from a subsample of 153 dogfish with unworn spines. The von Bertalanffy, two-parameter von Bertalanffy, two-phase von Bertalanffy, Gompertz, two-parameter Gompertz, and logistic models were fitted to length-at-age data for each sex separately, both with and without back-calculated lengths at age. The two-phase von Bertalanffy growth model produced the statistically best fit for both sexes of Gulf of Alaska spiny dogfish, resulting in L∞ = 87.2 and 102.5 cm and k= 0.106 and 0.058 for males and females, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper provides an historical review of homarid lobster fisheries, the development and usage of lobster hatcheries, and much of the research influenced by hatchery-initiated studies on natural history, physiology, and morphological development of the lobster, Homarus spp. Few commercial lobster hatcheries exist in the world today, yet their potential usage in restocking efforts in various countries is constantly being reexamined, particularly when natural stocks are considered “overfished.” Furthermore, many individual researchers working on homarid lobsters use smallscale hatchery operations to provide the animals necessary for their work as well as animals reared and provided by various governmental agencies interested in specific projects on larvae, postlarvae, or juveniles. Such researchers can benefi t from the information in this review and can avoid many pitfalls previously documented. The development of hatcheries and the experimental studies that were generated from their activities have had a direct impact on much of the research on lobsters. The past work arising from hatchery operations—descriptions of life stages, behavior, physiology, etc.—has generally been confirmed rather than refuted and has stimulated further research important for an understanding of the life history of homarid lobsters. The connections between homarid fisheries and hatchery operations (i.e. culturing of the lobsters), whether small- or large-scale for field and laboratory research, are important to understand so that better tools for fishery management can be developed. This review tries to provide such connections. However, the rearing techniques in use in today’s hatcheries—most of which are relics from the past—are clearly not effi cient enough for large-scale commercial aquaculture of lobsters or even for current restocking efforts practiced by several countries today. If hatcheries are to be used to supplement homarid stocks, to restock areas that were overfished, or to reintroduce species into their historical ranges, there is a clear need to further develop culture techniques. This review should help in assessments of culturing techniques for Homarus spp. and provide a reference source for researchers or governmental agencies wishing to avoid repeating previous mistakes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Size-at-50% maturity, age and growth, of Oreochromis (Nyasalapia) karongae (‘chambo’) in Lakes Malawi and Malombe were studied. Similar size-at-50% maturity and growth patterns were found for populations in Lake Malawi, but differences were observed for Lake Malombe populations, suggesting that current chambo fisheries management regulations, based on findings from the southern part of Lake Malawi, may be applicable to the central and southern parts of that lake, but not to Lake Malombe.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT TRANSCRIBED FROM ENGLE'S PH.D. ORAL DEFENSE PAMPHLET: The natural history of juvenile California spiny lobster, Panulirus interruptus (Randall), was investigated, with primary emphasis placed on ascertaining juvenile habitats, determining juvenile growth rates and component growth processes, and evaluating ecological and behavioral phenomena associated with juvenile survival and growth. Habitat surveys of island and mainland localities throughout southern and lower California revealed that small, greenish juveniles typically inhabit crevices or temporary burrows in 0-4m deep, wave-swept rocky habitats covered by dense beds of surf grass, Phyllospadix torreyi S. Watson. Phyllospadix beds were more abundant on gradually sloping rocky mainland beaches than on steeply sloping island shores. Phyllospadix abundance was positively correlated with P. interruptus abundance; however, at Santa Catalina Island, the Phyllospadix habitat was not extensive enough to be the sole lobster nursery. In laboratory tests, puerulus larvae and early juveniles chose Phyllospadix over rubble rocks or broad-bladed kelp, but did not consistently prefer Phyllospadix over reticulate algae. Ecology, growth, and behavior of juvenile P. interruptus inhabiting a discrete Phyllospadix habitat at Bird Rock, Santa Catalina Island, were investigated from October 1974 through December 1976 by means of frequent scuba surveys. Pueruli settled from June to November. Peak recruitment occurred from July to September, when seasonal temperatures were maximal. Settled larvae were approximately one year old. Juvenile growth was determined by size-frequency, single molt increment, mark-recapture, and laboratory culture studies. Carapace length vs. wet weight relationships fit standard power curve equations. Bird Rock juveniles grew from 7 to 32mm CL in 10-11 molts and from 32 to 56mm CL in 5-6 molts during their first and second benthic years, respectively. Growth rates were similar for males and females. Juveniles regenerating more than two limbs grew less per molt than intact lobsters. Long-term growth of laboratory-reared juveniles was 20% less than that of field lobsters. Growth component multiple regression analyses demonstrated that molt increment was directly proportional to premolt size and temperature for age 1+ lobsters. Molt frequency was inversely proportional to size and directly proportional to temperature. Temperature affected age 2+ lobsters similarly, but molt increment was independent of size, and molt frequency declined at a different rate. Juvenile growth rates more than doubled during warm water months compared to cold water months, primarily because of increased molt frequency. Based on results from this study and from previous investigations, it is estimated that P. interruptus males and females become sexually mature by ages 4 and 5 years, respectively, and that legai size is reached by 7 or 8 years of age. Juvenile P. interruptus activity patterns and foraging behavior were similar to those of adults, except that juvenile home ranges were proportionally smaller, and small juveniles were apparently not attracted to distant food. Small mollusks, abundant in Phyllospadix habitats, were the major food items. Size-dependent predation by fish and octopus apparently caused the considerable juvenile mortality observed at Bird Rock. Juveniles approaching 2 years of age gathered in mixed size-class aggregations by day and foraged beyond the grass beds at night. In autumn, these juveniles migrated to deeper habitats, coincident with new puerulus settlement in the Phyllospadix beds. Based on strong inferences from the results, it is proposed that size-dependent predation is the most important factor determining the !ife history strategy of juvenile P. interruptus. Life history tactics promoting rapid growth apparently function dually in reducing the period of high vulnerability to predation and decreasing the time required to reach sexual maturity. The Phyllospadix habitat is an excellent lobster nursery because it provides shelter from predators and possesses abundant food resources for sustaining optimum juvenile growth rates in shallow, warm water.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Age and Growth Program at the Alaska Fisheries Science Center is tasked with providing age data in order to improve the basic understanding of the ecology and fisheries dynamics of Alaskan fish species. The primary focus of the Age and Growth Program is to estimate ages from otoliths and other calcified structures for age-structured modeling of commercially exploited stocks; however, the program has recently expanded its interests to include numerous studies on topics ranging from age estimate validation to the growth and life history of non-target species. Because so many applications rely upon age data and particularly upon assurances as to their accuracy and precision, the Age and Growth Program has developed this practical guide to document the age determination of key groundfish species from Alaskan waters. The main objective of this manual is to describe techniques specific to the age determination of commercially and ecologically important species studied by the Age and Growth Program. The manual also provides general background information on otolith morphology, dissection, and preparation, as well as descriptions of methods used to measure precision and accuracy of age estimates. This manual is intended not only as a reference for age readers at the AFSC and other laboratories, but also to give insight into the quality of age estimates to scientists who routinely use such data.