950 resultados para sinus floor augmentation
Resumo:
Five short bottom sediment cores taken in Wakulla Spring Wakulla County, Florida, were described lithologically and sampled for palynological study. Four of the cores were recoveredfrom sediments at the spring cave entrance (130 feet water depth). One core was taken in a fossil vertebrate bone bed, 280 feet distance into the main spring cave at a water depth of 240 feet. Sediments in the cores are composed of alternating intervals of quartz sand and calcilitite, containing freshwater diatoms, freshwater mollusk shells and plant remains. The predominant pollen present in all cores consists of a periporate variety typical of the herb families Chenopodiaceae and Amaranthaceae. Arboreal flora, typical of the area surrounding the spring today, represent a very low percentage of thle pollen assemblage in the cores. Clustered Chenopod-Amaranth type pollen observed in one core suggest minimal transport prior to deposition, and indicate that the bottom sediments in the cave may be essentially In situ. An absence of exotic flora suggests a Quaternary age for the sediments. (PDF contains 11 pages.)
Resumo:
Harry Hess's hypothesis of sea-floor spreading brought together his long-standing interests in island arcs, oceanic topography, and the oceanic crust. The one unique feature of Hess's hypothesis was the origin of the oceanic crust as a hydration rind on the top of the mantle -- an idea that was not well received, even by the early converts to sea-floor spreading. Hess never changed his mind on this issue, and his stubbornness illuminates the logic of his discovery. Published and archival records show that 1) Hess became convinced the oceanic crust was a hydration rind as early as mid 1958, when he was still a fixist, 2) he devised sea-floor spreading in 1960 to reconcile the hydration-rind model with the newly discovered, high heat flow at oceanic ridge crests, and 3) Hess's new mobilist solution did the least amount of violence to his older fixist solution.
Resumo:
We examine the role of heat source geometry in determining rates of airflow and thermal stratification in natural displacement ventilation flows. We modify existing models to account for heat sources of finite (non-zero) area, such as formed by a sun patch warming the floor of a room. Our model allows for predictions of the steady stratification and ventilation flow rates that develop in a room due to a circular heat source at floor level. We compare our theoretical predictions with predictions for the limiting cases of a point source of heat (yielding a stratified interior), and a uniformly heated floor (yielding a mixed interior). Our theory shows a smooth transition between these two limits, which themselves result in extremes of ventilation, as the ratio of the heat source radius to the room height increases. Our model for the transition from displacement to mixing ventilation is compared to previous work and demonstrates that the transition can occur for smaller sources than previously thought, particularly for rooms with large floor area compared to ceiling height. © 2009 Elsevier Ltd.