872 resultados para signal detection theory
Resumo:
The sources of noise that limit olfactory signal detection were investigated in dissociated rat olfactory receptor cells. Near-threshold odorant-evoked currents exhibited large random fluctuation. However, similar fluctuations were observed in the absence of applied odorants when currents were induced by elevating the intracellular cyclic AMP concentration. This suggests that the fluctuations reflect noise intrinsic to the transduction mechanism, rather than the quantal nature of an odorant stimulus. For many odorants, this intrinsic noise may preclude the reliable detection of single odorant molecules.
Resumo:
We consider blind signal detection in an asynchronous code-division multiple-access (CDMA) system employing short spreading sequences in the presence of unknown multipath fading. This approach is capable of countering the presence of multiple-access interference (MAI) in CDMA fading channels. The proposed blind multiuser detector is based on an independent component analysis (ICA) to mitigate both MAI and noise. This algorithm has been utilised in blind source separation (BSS) of unknown sources from their mixtures. It can also be used for estimating the basis vectors of BSS. The aim is to include an ICA algorithm within a wireless receiver in order to reduce the level of interference in wideband systems. This blind multiuser detector requires no training sequence compared with the conventional multiuser detection receiver. The proposed ICA blind multiuser detector is made robust with respect to knowledge of signature waveforms and the timing of the user of interest. Several experiments are performed in order to verify the validity of the proposed ICA algorithm.
Resumo:
This paper investigates the performance analysis of separation of mutually independent sources in nonlinear models. The nonlinear mapping constituted by an unsupervised linear mixture is followed by an unknown and invertible nonlinear distortion, are found in many signal processing cases. Generally, blind separation of sources from their nonlinear mixtures is rather difficult. We propose using a kernel density estimator incorporated with equivariant gradient analysis to separate the sources with nonlinear distortion. The kernel density estimator parameters of which are iteratively updated to minimize the output independence expressed as a mutual information criterion. The equivariant gradient algorithm has the form of nonlinear decorrelation to perform the convergence analysis. Experiments are proposed to illustrate these results.
Resumo:
An improved inference method for densely connected systems is presented. The approach is based on passing condensed messages between variables, representing macroscopic averages of microscopic messages. We extend previous work that showed promising results in cases where the solution space is contiguous to cases where fragmentation occurs. We apply the method to the signal detection problem of Code Division Multiple Access (CDMA) for demonstrating its potential. A highly efficient practical algorithm is also derived on the basis of insight gained from the analysis. © EDP Sciences.
Resumo:
With luminance gratings, psychophysical thresholds for detecting a small increase in the contrast of a weak ‘pedestal’ grating are 2–3 times lower than for detection of a grating when the pedestal is absent. This is the ‘dipper effect’ – a reliable improvement whose interpretation remains controversial. Analogies between luminance and depth (disparity) processing have attracted interest in the existence of a ‘disparity dipper’. Are thresholds for disparity modulation (corrugated surfaces), facilitated by the presence of a weak disparity-modulated pedestal? We used a 14-bit greyscale to render small disparities accurately, and measured 2AFC discrimination thresholds for disparity modulation (0.3 or 0.6 c/deg) of a random texture at various pedestal levels. In the first experiment, a clear dipper was found. Thresholds were about 2× lower with weak pedestals than without. But here the phase of modulation (0 or 180 deg) was varied from trial to trial. In a noisy signal-detection framework, this creates uncertainty that is reduced by the pedestal, which thus improves performance. When the uncertainty was eliminated by keeping phase constant within sessions, the dipper effect was weak or absent. Monte Carlo simulations showed that the influence of uncertainty could account well for the results of both experiments. A corollary is that the visual depth response to small disparities is probably linear, with no threshold-like nonlinearity.
Resumo:
Measurement of detection and discrimination thresholds yields information about visual signal processing. For luminance contrast, we are 2 - 3 times more sensitive to a small increase in the contrast of a weak 'pedestal' grating, than when the pedestal is absent. This is the 'dipper effect' - a reliable improvement whose interpretation remains controversial. Analogies between luminance and depth (disparity) processing have attracted interest in the existence of a 'disparity dipper' - are thresholds for disparity, or disparity modulation (corrugated surfaces), facilitated by the presence of a weak pedestal? Lunn and Morgan (1997 Journal of the Optical Society of America A 14 360 - 371) found no dipper for disparity-modulated gratings, but technical limitations (8-bit greyscale) might have prevented the necessary measurement of very small disparity thresholds. We used a true 14-bit greyscale to render small disparities accurately, and measured 2AFC discrimination thresholds for disparity modulation (0.6 cycle deg-1) of a random texture at various pedestal levels. Which interval contained greater modulation of depth? In the first experiment, a clear dipper was found. Thresholds were about 2X1 lower with weak pedestals than without. But here the phase of modulation (0° or 180°) was randomised from trial to trial. In a noisy signal-detection framework, this creates uncertainty that is reduced by the pedestal, thus improving performance. When the uncertainty was eliminated by keeping phase constant within sessions, the dipper effect disappeared, confirming Lunn and Morgan's result. The absence of a dipper, coupled with shallow psychometric slopes, suggests that the visual response to small disparities is essentially linear, with no threshold-like nonlinearity.
Resumo:
We studied the visual mechanisms that serve to encode spatial contrast at threshold and supra-threshold levels. In a 2AFC contrast-discrimination task, observers had to detect the presence of a vertical 1 cycle deg-1 test grating (of contrast dc) that was superimposed on a similar vertical 1 cycle deg-1 pedestal grating, whereas in pattern masking the test grating was accompanied by a very different masking grating (horizontal 1 cycle deg-1, or oblique 3 cycles deg-1). When expressed as threshold contrast (dc at 75% correct) versus mask contrast (c) our results confirm previous ones in showing a characteristic 'dipper function' for contrast discrimination but a smoothly increasing threshold for pattern masking. However, fresh insight is gained by analysing and modelling performance (p; percent correct) as a joint function of (c, dc) - the performance surface. In contrast discrimination, psychometric functions (p versus logdc) are markedly less steep when c is above threshold, but in pattern masking this reduction of slope did not occur. We explored a standard gain-control model with six free parameters. Three parameters control the contrast response of the detection mechanism and one parameter weights the mask contrast in the cross-channel suppression effect. We assume that signal-detection performance (d') is limited by additive noise of constant variance. Noise level and lapse rate are also fitted parameters of the model. We show that this model accounts very accurately for the whole performance surface in both types of masking, and thus explains the threshold functions and the pattern of variation in psychometric slopes. The cross-channel weight is about 0.20. The model shows that the mechanism response to contrast increment (dc) is linearised by the presence of pedestal contrasts but remains nonlinear in pattern masking.
Resumo:
An efficient Bayesian inference method for problems that can be mapped onto dense graphs is presented. The approach is based on message passing where messages are averaged over a large number of replicated variable systems exposed to the same evidential nodes. An assumption about the symmetry of the solutions is required for carrying out the averages; here we extend the previous derivation based on a replica-symmetric- (RS)-like structure to include a more complex one-step replica-symmetry-breaking-like (1RSB-like) ansatz. To demonstrate the potential of the approach it is employed for studying critical properties of the Ising linear perceptron and for multiuser detection in code division multiple access (CDMA) under different noise models. Results obtained under the RS assumption in the noncritical regime give rise to a highly efficient signal detection algorithm in the context of CDMA; while in the critical regime one observes a first-order transition line that ends in a continuous phase transition point. Finite size effects are also observed. While the 1RSB ansatz is not required for the original problems, it was applied to the CDMA signal detection problem with a more complex noise model that exhibits RSB behavior, resulting in an improvement in performance. © 2007 The American Physical Society.
Resumo:
A solar power satellite is paid attention to as a clean, inexhaustible large- scale base-load power supply. The following technology related to beam control is used: A pilot signal is sent from the power receiving site and after direction of arrival estimation the beam is directed back to the earth by same direction. A novel direction-finding algorithm based on linear prediction technique for exploiting cyclostationary statistical information (spatial and temporal) is explored. Many modulated communication signals exhibit a cyclostationarity (or periodic correlation) property, corresponding to the underlying periodicity arising from carrier frequencies or baud rates. The problem was solved by using both cyclic second-order statistics and cyclic higher-order statistics. By evaluating the corresponding cyclic statistics of the received data at certain cycle frequencies, we can extract the cyclic correlations of only signals with the same cycle frequency and null out the cyclic correlations of stationary additive noise and all other co-channel interferences with different cycle frequencies. Thus, the signal detection capability can be significantly improved. The proposed algorithms employ cyclic higher-order statistics of the array output and suppress additive Gaussian noise of unknown spectral content, even when the noise shares common cycle frequencies with the non-Gaussian signals of interest. The proposed method completely exploits temporal information (multiple lag ), and also can correctly estimate direction of arrival of desired signals by suppressing undesired signals. Our approach was generalized over direction of arrival estimation of cyclostationary coherent signals. In this paper, we propose a new approach for exploiting cyclostationarity that seems to be more advanced in comparison with the other existing direction finding algorithms.
Resumo:
The primary goal of this dissertation is to develop point-based rigid and non-rigid image registration methods that have better accuracy than existing methods. We first present point-based PoIRe, which provides the framework for point-based global rigid registrations. It allows a choice of different search strategies including (a) branch-and-bound, (b) probabilistic hill-climbing, and (c) a novel hybrid method that takes advantage of the best characteristics of the other two methods. We use a robust similarity measure that is insensitive to noise, which is often introduced during feature extraction. We show the robustness of PoIRe using it to register images obtained with an electronic portal imaging device (EPID), which have large amounts of scatter and low contrast. To evaluate PoIRe we used (a) simulated images and (b) images with fiducial markers; PoIRe was extensively tested with 2D EPID images and images generated by 3D Computer Tomography (CT) and Magnetic Resonance (MR) images. PoIRe was also evaluated using benchmark data sets from the blind retrospective evaluation project (RIRE). We show that PoIRe is better than existing methods such as Iterative Closest Point (ICP) and methods based on mutual information. We also present a novel point-based local non-rigid shape registration algorithm. We extend the robust similarity measure used in PoIRe to non-rigid registrations adapting it to a free form deformation (FFD) model and making it robust to local minima, which is a drawback common to existing non-rigid point-based methods. For non-rigid registrations we show that it performs better than existing methods and that is less sensitive to starting conditions. We test our non-rigid registration method using available benchmark data sets for shape registration. Finally, we also explore the extraction of features invariant to changes in perspective and illumination, and explore how they can help improve the accuracy of multi-modal registration. For multimodal registration of EPID-DRR images we present a method based on a local descriptor defined by a vector of complex responses to a circular Gabor filter.
Resumo:
We examine the performance of a nonlinear fiber gyroscope for improved signal detection beating the quantum limits of its linear counterparts. The performance is examined when the nonlinear gyroscope is illuminated by practical field states, such as coherent and quadrature squeezed states. This is compared with the case of more ideal probes such as photon-number states.
Resumo:
The design of molecular sensors plays a very important role within nanotechnology and especially in the development of different devices for biomedical applications. Biosensors can be classified according to various criteria such as the type of interaction established between the recognition element and the analyte or the type of signal detection from the analyte (transduction). When Raman spectroscopy is used as an optical transduction technique the variations in the Raman signal due to the physical or chemical interaction between the analyte and the recognition element has to be detected. Therefore any significant improvement in the amplification of the optical sensor signal represents a breakthrough in the design of molecular sensors. In this sense, Surface-Enhanced Raman Spectroscopy (SERS) involves an enormous enhancement of the Raman signal from a molecule in the vicinity of a metal surface. The main objective of this work is to evaluate the effect of a monolayer of graphene oxide (GO) on the distribution of metal nanoparticles (NPs) and on the global SERS enhancement of paminothiophenol (pATP) and 4-mercaptobenzoic acid (4MBA) adsorbed on this substrate. These aromatic bifunctional molecules are able to interact to metal NPs and also they offer the possibility to link with biomolecules. Additionally by decorating Au or Ag NPs on graphene sheets, a coupled EM effect caused by the aggregation of the NPs and strong electronic interactions between Au or Ag NPs and the graphene sheets are considered to be responsible for the significantly enhanced Raman signal of the analytes [1-2]. Since there are increasing needs for methods to conduct reproducible and sensitive Raman measurements, Grapheneenhanced Raman Scattering (GERS) is emerging as an important method [3].
Resumo:
The current approach to data analysis for the Laser Interferometry Space Antenna (LISA) depends on the time delay interferometry observables (TDI) which have to be generated before any weak signal detection can be performed. These are linear combinations of the raw data with appropriate time shifts that lead to the cancellation of the laser frequency noises. This is possible because of the multiple occurrences of the same noises in the different raw data. Originally, these observables were manually generated starting with LISA as a simple stationary array and then adjusted to incorporate the antenna's motions. However, none of the observables survived the flexing of the arms in that they did not lead to cancellation with the same structure. The principal component approach is another way of handling these noises that was presented by Romano and Woan which simplified the data analysis by removing the need to create them before the analysis. This method also depends on the multiple occurrences of the same noises but, instead of using them for cancellation, it takes advantage of the correlations that they produce between the different readings. These correlations can be expressed in a noise (data) covariance matrix which occurs in the Bayesian likelihood function when the noises are assumed be Gaussian. Romano and Woan showed that performing an eigendecomposition of this matrix produced two distinct sets of eigenvalues that can be distinguished by the absence of laser frequency noise from one set. The transformation of the raw data using the corresponding eigenvectors also produced data that was free from the laser frequency noises. This result led to the idea that the principal components may actually be time delay interferometry observables since they produced the same outcome, that is, data that are free from laser frequency noise. The aims here were (i) to investigate the connection between the principal components and these observables, (ii) to prove that the data analysis using them is equivalent to that using the traditional observables and (ii) to determine how this method adapts to real LISA especially the flexing of the antenna. For testing the connection between the principal components and the TDI observables a 10x 10 covariance matrix containing integer values was used in order to obtain an algebraic solution for the eigendecomposition. The matrix was generated using fixed unequal arm lengths and stationary noises with equal variances for each noise type. Results confirm that all four Sagnac observables can be generated from the eigenvectors of the principal components. The observables obtained from this method however, are tied to the length of the data and are not general expressions like the traditional observables, for example, the Sagnac observables for two different time stamps were generated from different sets of eigenvectors. It was also possible to generate the frequency domain optimal AET observables from the principal components obtained from the power spectral density matrix. These results indicate that this method is another way of producing the observables therefore analysis using principal components should give the same results as that using the traditional observables. This was proven by fact that the same relative likelihoods (within 0.3%) were obtained from the Bayesian estimates of the signal amplitude of a simple sinusoidal gravitational wave using the principal components and the optimal AET observables. This method fails if the eigenvalues that are free from laser frequency noises are not generated. These are obtained from the covariance matrix and the properties of LISA that are required for its computation are the phase-locking, arm lengths and noise variances. Preliminary results of the effects of these properties on the principal components indicate that only the absence of phase-locking prevented their production. The flexing of the antenna results in time varying arm lengths which will appear in the covariance matrix and, from our toy model investigations, this did not prevent the occurrence of the principal components. The difficulty with flexing, and also non-stationary noises, is that the Toeplitz structure of the matrix will be destroyed which will affect any computation methods that take advantage of this structure. In terms of separating the two sets of data for the analysis, this was not necessary because the laser frequency noises are very large compared to the photodetector noises which resulted in a significant reduction in the data containing them after the matrix inversion. In the frequency domain the power spectral density matrices were block diagonals which simplified the computation of the eigenvalues by allowing them to be done separately for each block. The results in general showed a lack of principal components in the absence of phase-locking except for the zero bin. The major difference with the power spectral density matrix is that the time varying arm lengths and non-stationarity do not show up because of the summation in the Fourier transform.
Resumo:
The problem of sensor-network-based distributed intrusion detection in the presence of clutter is considered. It is argued that sensing is best regarded as a local phenomenon in that only sensors in the immediate vicinity of an intruder are triggered. In such a setting, lack of knowledge of intruder location gives rise to correlated sensor readings. A signal-space view-point is introduced in which the noise-free sensor readings associated to intruder and clutter appear as surfaces f(s) and f(g) and the problem reduces to one of determining in distributed fashion, whether the current noisy sensor reading is best classified as intruder or clutter. Two approaches to distributed detection are pursued. In the first, a decision surface separating f(s) and f(g) is identified using Neyman-Pearson criteria. Thereafter, the individual sensor nodes interactively exchange bits to determine whether the sensor readings are on one side or the other of the decision surface. Bounds on the number of bits needed to be exchanged are derived, based on communication-complexity (CC) theory. A lower bound derived for the two-party average case CC of general functions is compared against the performance of a greedy algorithm. Extensions to the multi-party case is straightforward and is briefly discussed. The average case CC of the relevant greaterthan (CT) function is characterized within two bits. Under the second approach, each sensor node broadcasts a single bit arising from appropriate two-level quantization of its own sensor reading, keeping in mind the fusion rule to be subsequently applied at a local fusion center. The optimality of a threshold test as a quantization rule is proved under simplifying assumptions. Finally, results from a QualNet simulation of the algorithms are presented that include intruder tracking using a naive polynomial-regression algorithm. 2010 Elsevier B.V. All rights reserved.