924 resultados para serotonin 2 receptor
Resumo:
Melanoma is known to be highly resistant to chemotherapy. Treatment with high dose IL-2 has shown significant clinical benefit in a minority of metastatic melanoma patients and has lead to long term survival in a few cases. However, this treatment is associated with excessive multiorgan toxicities, which severely limits its use. We hypothesize that one mechanism of effective IL-2 therapy is through the direct upregulation of IL-24 production in melanoma tumors and subsequent IL-24 mediated tumor growth suppression. Five melanoma cell lines were treated with high dose recombinant hIL-2 at 1000U/ml. Three of the cell lines (A375, WM1341, WM793) showed statistically significant increases in their levels of IL-24 protein when measured by Western blotting, while the remaining two lines (WM35, MeWo) remained negative for IL-24 message and protein. This increase in IL-24 was abolished by either preincubating with an anti-IL-2 antibody or by blocking the IL-2 receptor directly with antibodies against the receptor chains. We also demonstrated by ELISA that these three cell lines secrete IL-24 protein in higher amounts when stimulated with IL-2 than do untreated cells. These cells were found to contain IL-2R beta and gamma message by RT-PCR and also expressed higher levels of IL-24 when treated with IL-15, which shares the IL-2R beta chain. Thus we propose that IL-2 is signaling through IL-2R beta on some melanoma cells to upregulate IL-24 protein expression. To address the biological function of IL-2 in melanoma cells, five cell lines were treated with IL-2 and cell viability determined. Cell growth was found to be significantly decreased by day 4 in the IL-24 positive cell lines while no effect on growth was seen in WM35 or MeWo. Incubating the cells with anti-IL-24 antibody or transfecting with IL-24 siRNA effectively negated the growth suppression seen with IL-2. These data support our hypothesis that in addition to its immunotherapeutic effects, IL-2 also acts directly on some melanoma tumors and that the IL-24 and IL-2R beta status of a tumor may be useful in predicting patient response to high dose IL-2.
Resumo:
Calcium ionophore, ionomycin, and phorbol myristate acetate (PMA) were used to activate rabbit peripheral blood B cells to study the role of increased intracellular calcium ion concentration ( (Ca$\sp2+\rbrack\sb{\rm i}$), protein kinase C (PKC) activation, and autocrine interleukin (IL-2) in inducing cell cycle entry and maintaining activation to DNA synthesis. When stimulated with a combination of ionomycin and PMA the B cells produced a soluble factor that supported the IL-2 dependent cell line, CTLL-2. The identity of the factor was established as IL-2 and its source was proved to be B cells in further experiments. Absorption studies and limiting dilution analysis indicated that IL-2 produced by B cells can act as an autocrine growth factor. Next, the effect of complete and incomplete signalling on B lymphocyte activation leading to cell cycle entry, IL-2 production, functional IL-2 receptor (IL-2R) expression, and DNA synthesis was examined. It was observed that cell cycle entry could be induced by signals provided by each reagent alone, but IL-2 production, IL-2R expression, and progression to DNA synthesis required activation with both reagents. Incomplete activation with ionomycin or PMA alone altered the responsiveness of B cells to further stimulation only in the case of ionomycin, and the unresponsiveness of these cells was apparently due to a lack of functional IL-2R expression on these cells, even though IL-2 production was maintained. The requirement of IL-2 for maintenance of activation to DNA synthesis was then investigated. The hypothesis that IL-2, acts in late G$\sb1$ and is required for DNA synthesis in B cells was supported by comparing IL-2 production and DNA synthesis in peripheral blood cells and purified B cells, kinetic analysis of these events in B cells, effects of anti-IL-2 antibody and PKC inhibitors, and by the response of G$\sb1$ B cells. Additional signals transduced by the interaction of autocrine IL-2 and functional IL-2 receptor on rabbit B cells were found to be necessary to drive these cells to S phase, after initial activation caused by simultaneous increase in (Ca$\sp2+\rbrack\sb{\rm i}$ and PKC activation had induced cell cycle entry, IL-2 production, and functional IL-2 receptor expression. ^
Resumo:
BACKGROUND/AIMS Important characteristics of neuroendocrine neoplasms (NEN) for prognosis and therapeutic decisions are the MIB-1 proliferative index (tumor grade) and tumor stage. Moreover, these tumors express peptide hormone receptors like somatostatin and gastric inhibitory peptide (GIP) receptors which represent important established and potential future targets, respectively, for molecular imaging and radiotherapy. However, the interrelation between tumor proliferation, stage, and peptide receptor amounts has never been assessed. METHODS In 114 gastrointestinal and bronchopulmonary NEN, the proliferative rate assessed with MIB-1 immunohistochemistry and tumor stage were compared with the somatostatin type 2 receptor (sst2) and GIP receptor expression measured quantitatively with in vitro receptor autoradiography. RESULTS NEN generally showed high sst2 and GIP receptor expression. GIP receptor but not sst2 expression correlated with the MIB-1 index. GIP receptor levels gradually increased in a subset of insulinomas and nonfunctioning pancreatic NEN, and decreased in ileal and bronchopulmonary NEN with increasing MIB-1 rate. MIB-1 levels were identified, above which GIP receptor levels were consistently high or low. These MIB-1 levels were clearly different from those defining tumor grade. In grade 3 NEN, GIP receptor levels were always low, while sst2 levels were variable and sometimes extremely high. Conversely, sst2 expression correlated more frequently with tumor stage than GIP receptor expression, with metastasized NEN showing higher sst2 levels than localized tumors. CONCLUSIONS sst2, a clinically crucial molecular target, shows variable and unpredictable expression in NEN irrespective of tumor grade. Therefore, each NEN should be tested for sst2 if clinical applications with somatostatin analogs are considered. Conversely, the potential future role of GIP receptors as molecular targets in NEN may be dependent on the MIB-1 level.
Resumo:
Early weaning is a stressful event characterized by a transient period of intestinal atrophy that may be mediated by reduced secretion of glucagon-like peptide (GLP) 2. We tested whether enterally fed bile acids or plant sterols could increase nutrient-dependent GLP-2 secretion and improve intestinal adaptation in weanling pigs. During the first 6 d after weaning, piglets were intragastrically infused once daily with either deionized water -control-, chenodeoxycholic acid -CDC; 60mg/kg body weight-, or b-sitoesterol -BSE; 100 mg/kg body weight-. Infusing CDC increased plasma GLP-2 -P menor que 0.05- but did not affect plasma GLP-1 and feed intake. The intestinal expression of Glp2r -glucagon-like peptide 2 receptor-, Asbt -sodium-dependent bile acid transporter-, Fxr -farnesoid X receptor-, and Tgr5 -guanosine protein?coupled bile acid receptor- genes were not affected by CDC treatment. The intragastric administration of CDC did not alter the weight and length of the intestine, yet increased the activation of caspase-3 in ileal villi -P menor que 0.02- and the expression of Il6 -interleukin 6; P menor que 0.002- in the jejunum. In contrast, infusing BSE did not affect any of the variables that were measured. Our results show that the enteral administration of the bile acid CDC potentiates the nutrient-induced secretion of endogenous GLP-2 in early-weaned pigs. Bile acid?enhanced release of GLP-2, however, did not result in improved intestinal growth, morphology, or inflammation during the postweaning degenerative phase.
Resumo:
Recent studies indicated that hyperactivity of the hypothalamo-pituitary-adrenal system is a considerable risk factor for the precipitation of affective disorders, most notably of major depression. The mechanism by which this hyperactivity eventually leads to clinical symptoms of depression is unknown. In the present animal study, we tested one possible mechanism, i.e., that long-term exposure to high corticosterone levels alters functional responses to serotonin in the hippocampus, an important area in the etiology of depression. Rats were injected daily for 3 weeks with a high dose of corticosterone; electrophysiological responses to serotonin were recorded intracellularly from CA1 pyramidal neurons in vitro. We observed that daily injections with corticosterone gradually attenuate the membrane hyperpolarization and resistance decrease mediated by serotonin-1A receptors. We next used single-cell antisense RNA amplification from identified CA1 pyramidal neurons to resolve whether the functional deficits in serotonin responsiveness are accompanied by decreased expression levels of the serotonin-1A receptor. It appeared that expression of serotonin-1A receptors in CA1 pyramidal cells is not altered; this result was supported by in situ hybridization. Expression of corticosteroid receptors in the same cells, particularly of the high-affinity mineralocorticoid receptor, was significantly reduced after long-term corticosterone treatment. The present findings indicate that prolonged elevation of the corticosteroid concentration, a possible causal factor for major depression in humans, gradually attenuates responsiveness to serotonin without necessarily decreasing serotonin-1A receptor mRNA levels in pyramidal neurons. These functional changes may occur by a posttranscriptional mechanism or by transcriptional regulation of genes other than the serotonin-1A receptor gene itself.
Resumo:
The effects of the 29-amino acid neuropeptide galanin [GAL (1–29)], GAL(1–15), GAL(1–16), and the GAL subtype 2 receptor agonist d-tryptophan2-GAL(1–29) were studied in the dorsal hippocampus in vitro with intracellular recording techniques. GAL(1–15) induced, in the presence of tetrodotoxin, a dose-dependent hyperpolarization in hippocampal CA3 neurons. Most of the GAL(1–15)-sensitive neurons did not respond to GAL(1–29), GAL(1–16), or d-tryptophan2-GAL(1–29). These results indicate the presence of a distinct, yet-to-be cloned GAL(1–15)-selective receptor on CA3 neurons in the dorsal hippocampus.
Resumo:
Chemical modification of proteins with polyethylene glycol (PEGylation) can increase plasma half-lives, stability, and therapeutic potency. To make a PEGylated recombinant immunotoxin with improved therapeutic properties, we prepared a mutant of anti-Tac(Fv)-PE38 (LMB-2), a recombinant immunotoxin composed of a single-chain Fv fragment of the anti-human Tac monoclonal antibody to the IL-2 receptor α subunit fused to a 38-kDa fragment of Pseudomonas exotoxin. For site-specific PEGylation of LMB-2, one cysteine residue was introduced into the peptide connector (ASGCGPE) between the Fv and the toxin. This mutant LMB-2 (cys1-LMB-2), which retained full cytotoxic activity, was then site-specifically conjugated with 5 or 20 kDa of polyethylene glycol-maleimide. When compared with unmodified LMB-2, both PEGylated immunotoxins showed similar cytotoxic activities in vitro but superior stability at 37°C in mouse serum, a 5- to 8-fold increase in plasma half-lives in mice, and a 3- to 4-fold increase in antitumor activity. This was accompanied by a substantial decrease in animal toxicity and immunogenicity. Site-specific PEGylation of recombinant immunotoxins may increase their therapeutic potency in humans.
Resumo:
IL-2 and -15 belong to the four α-helix bundle family of cytokines and display a spectrum of overlapping immune functions because of shared signal transducing receptor components of the IL-2 receptor complex. However, recent evidence suggests a nonredundant unique role for IL-15 in the establishment and perhaps maintenance of peripheral natural killer (NK) cell populations in vivo. To explore the contribution of locally released IL-15 on peripheral NK-cell-mediated innate immune responses, we generated a recombinant vaccinia virus that expresses IL-15 and evaluated the course of vaccinial disease in athymic nude mice. Coexpression of IL-15 resulted in the attenuation of virulence of vaccinia virus, and mice inoculated with 105 plaque-forming units or less resolved the infection successfully. In contrast, mice inoculated with a similar dose of the control vaccinia virus failed to eliminate the virus and died of generalized vaccinial disease. Enhanced expression of IL-12 and IFN-γ as well as induction of chemokines were evident in the mice inoculated with IL-15-expressing vaccinia virus in addition to an increase in NK cells in the spleen. However, in this model system, the degree of attenuation in viral virulence attained with coexpression of IL-15 was much less than that achieved with coexpression of IL-2, suggesting that the peripheral NK-cell-mediated events are more responsive to IL-2 than to IL-15.
Resumo:
When administered in high doses to HIV positive (HIV+) individuals, interleukin 2 (IL-2) causes extreme toxicity and markedly increases plasma HIV levels. Integration of the information from the structure-activity relationships of the IL-2 receptor interaction, the cellular distribution of the different classes of IL-2 receptors, and the pharmacokinetics of IL-2 provides for the rationale that low IL-2 doses should circumvent toxicity. Therefore, to identify a nontoxic, but effective and safe IL-2 treatment regimen that does not stimulate viral replication, doses of IL-2 from 62,500 to 250,000 IU/m2/day were administered subcutaneously for 6 months to 16 HIV+ individuals with 200-500 CD4+ T cells/mm3. IL-2 was already detectable in the plasma of most HIV+ individuals even before therapy. Peak plasma IL-2 levels were near saturating for high affinity IL-2 receptors in 10 individuals who received the maximum nontoxic dose, which ranged from 187,500 to 250,000 IU/m2/day. During the 6 months of treatment at this dose range, plasma levels of proinflammatory cytokines remained undetectable, and plasma HIV RNA levels did not change significantly. However, delayed type hypersensitivity responses to common recall antigens were markedly augmented, and there were IL-2 dose-dependent increases in circulating Natural Killer cells, eosinophils, monocytes, and CD4+ T cells. Expanded clinical trials of low dose IL-2 are now warranted, especially in combination with effective antivirals to test for the prevention of immunodeficiency and the emergence of drug-resistant mutants and for the eradication of residual virions.
Resumo:
Overexpression of the Neu/ErbB-2 receptor tyrosine kinase has been implicated in the genesis of human breast cancer. Indeed, expression of either activated or wild-type neu in the mammary epithelium of transgenic mice results in the induction of mammary tumors. Previously, we have shown that many of the mammary tumors arising in transgenic mice expressing wild-type neu occur through somatic activating mutations within the neu transgene itself. Here we demonstrate that these mutations promote dimerization of the Neu receptor through the formation of disulfide bonds, resulting in its constitutive activation. To explore the role of conserved cysteine residues within the region deleted in these altered Neu proteins, we examined the transforming potential of a series of Neu receptors in which the individual cysteine residues were mutated. These analyses indicated that mutation of certain cysteine residues resulted in the oncogenic activation of Neu. The increased transforming activity displayed by the altered receptors correlated with constitutive dimerization that occurred in a disulfide bond-dependent manner. We further demonstrate that addition of 2-mercaptoethanol to the culture medium interfered with the specific transforming activity of the mutant Neu receptors. These observations suggest that oncogenic activation of Neu results from constitutive disulfide bond-dependent dimerization.
Resumo:
The interleukin 7 receptor (IL-7R) plays a crucial role in early B- and T-cell development. It consists of a unique a chain and a common gamma chain [IL-2 receptor gamma chain (IL-2Rgamma)]. Gene inactivation of IL-7, IL-7R, and IL-2Rgamma resulted in severe impairment of B and T lymphopoiesis in mice. In addition, IL-2Rgamma-deficient mice lack gammadelta T cells in the skin and have the impaired development of natural killer (NK) cells and intraepithelial lymphocytes. To explore the role of IL-7/IL-7R system in gammadelta T- and NK-cell development, we have generated and analyzed IL-7R-deficient mice. gammadelta T cells were absent from skin, gut, liver, and spleen in the deficient mice. In contrast, alphabeta T and B cells were detected in reduced, but certain, numbers, and NK cells developed normally. The gammadelta T-cell development in fetal and adult thymus was also completely blocked. These results clearly demonstrate that the signal from IL-7R is indispensable for gammadelta T-cell development in both thymic and extrathymic pathways. On the contrary, it is suggested that NK-cell development requires cytokine(s) other than IL-7.
Resumo:
Stimulation via the T-cell growth factor interleukin 2 (IL-2) leads to tyrosine phosphorylation of Shc, the interaction of Shc with Grb2, and the Ras GTP/GDP exchange factor, mSOS. Shc also coprecipitates with the IL-2 receptor (IL-2R), and therefore, may link IL-2R to Ras activation. We have further characterized the Shc-IL-2R interaction and have made the following observations. (i) Among the two phosphotyrosine-interaction domains present in Shc, the phosphotyrosine-binding (PTB) domain, rather than its SH2 domain, interacts with the tyrosine-phosphorylated IL-2R beta chain. Moreover, the Shc-PTB domain binds a phosphopeptide derived from the IL-2R beta chain (corresponding to residues surrounding Y338, SCFTNQGpYFF) with high affinity. (ii) In vivo, mutant IL-2R beta chains lacking the acidic region of IL-2Rbeta (which contains Y338) fail to phosphorylate Shc. Furthermore, when wild type or mutant Shc proteins that lack the PTB domain were expressed in the IL-2-dependent CTLL-20 cell line, an intact Shc-PTB domain was required for Shc phosphorylation by the IL-2R, which provides further support for a Shc-PTB-IL-2R interaction in vivo. (iii) PTB and SH2 domains of Shc associate with different proteins in IL-2- and T-cell-receptor-stimulated lysates, suggesting that Shc, through the concurrent use of its two different phosphotyrosine-binding domains, could assemble multiple protein complexes. Taken together, our in vivo and in vitro observations suggest that the PTB domain of Shc interacts with Y338 of the IL-2R and provide evidence for a functional role for the Shc-PTB domain in IL-2 signaling.
Resumo:
Interleukin 2 (IL-2)-deficient (IL-2-/-) mice develop hemolytic anemia and chronic inflammatory bowel disease. Importantly, the induction of disease in IL-2-deficient mice is critically dependent on CD4+ T cells. We have studied the requirements of T cells from IL-2-deficient mice for costimulation with B7 antigens. Stable B7-1 or B7-2 chinese hamster ovary (CHO) cell transfectants could synergize with anti-CD3 monoclonal antibody (mAb) to induce the proliferation of CD4+ T cells from IL-2-/- mutant mice. Further mechanistic studies established that B7-induced activation resulted in surface expression of the alpha chain of the IL-2 receptor. B7-induced proliferation occurred independently of IL-4 and was largely independent of the common gamma chain of the IL-2, IL-4, IL-7, IL-9, and IL-15 receptors. Finally, anti-B7-2 but not anti-B7-1 mAb was able to inhibit the activation of IL-2-/- T cells induced by anti-CD3 mAb in the presence of syngeneic antigen-presenting cells. The results of our experiments indicate that IL-2-/- CD4+ T cells remain responsive to B7 stimulation and raise the possibility that B7 antagonists have a role in the prevention/treatment of inflammatory bowel disease.
Resumo:
The specific signal transduction function of the gamma c subunit in the interleukin (IL) 2, IL-4, IL-7, IL-9, and IL-15 receptor complexes remains undefined. The present structure-function analyses demonstrated that the entire cytoplasmic tail of gamma c could be functionally replaced in the IL-2 receptor (IL-2R) signaling complex by a severely truncated erythropoietin receptor cytoplasmic domain lacking tyrosine residues. Heterodimerization of IL-2R beta with either gamma c or the truncated erythropoietin receptor chain led to an array of specific signals normally derived from the native IL-2R despite the substitution of Janus kinase JAK2 for JAK3 in the receptor complex. These findings thus suggest a model in which the gamma c subunit serves as a common and generic "trigger" chain by providing a nonspecific Janus kinase for signaling program initiation, while signal specificity is determined by the unique "driver" subunit in each of the gamma c- containing receptor complexes. Furthermore, these results may have important functional implications for the asymmetric design of many cytokine receptor complexes and the evolutionary design of receptor subfamilies that share common trigger or driver subunits.
Resumo:
In human systemic lupus erythematosus (SLE), diverse autoantibodies accumulate over years before disease manifestation. Unaffected relatives of SLE patients frequently share a sustained production of autoantibodies with indiscriminable specificity, usually without ever acquiring the disease. We studied relations of IgG autoantibody profiles and peripheral blood activated regulatory T-cells (aTregs), represented by CD4(+)CD25(bright) T-cells that were regularly 70-90% Foxp3(+). We found consistent positive correlations of broad-range as well as specific SLE-associated IgG with aTreg frequencies within unaffected relatives, but not patients or unrelated controls. Our interpretation: unaffected relatives with shared genetic factors compensated pathogenic effects by aTregs engaged in parallel with the individual autoantibody production. To study this further, we applied a novel analytic approach named coreferentiality that tests the indirect relatedness of parameters in respect to multivariate phenotype data. Results show that independently of their direct correlation, aTreg frequencies and specific SLE-associated IgG were likely functionally related in unaffected relatives: they significantly parallelled each other in their relations to broad-range immunoblot autoantibody profiles. In unaffected relatives, we also found coreferential effects of genetic variation in the loci encoding IL-2 and CD25. A model of CD25 functional genetic effects constructed by coreferentiality maximization suggests that IL-2-CD25 interaction, likely stimulating aTregs in unaffected relatives, had an opposed effect in SLE patients, presumably triggering primarily T-effector cells in this group. Coreferentiality modeling as we do it here could also be useful in other contexts, particularly to explore combined functional genetic effects.