992 resultados para separated shear layer
Resumo:
Experiments were conducted in water and wind tunnels on spheres in the Reynolds number range 6 x 10(3) to 6.5 x 10(5) to study the effect of natural ventilation on the boundary layer separation and near-wake Vortex shedding characteristics. In the subcritical range of Re (<2 x 10(5)), ventilation caused a marginal downstream shift in the location of laminar boundary layer separation; there was only a small change in the vortex shedding frequency. In the supercritical range (Re > 4 x 10(5)), ventilation caused a downstream shift in the mean locations of boundary layer separation and reattachment; these lines showed significant axisymmetry in the presence of venting. No distinct vortex shedding frequency was found. Instead, a dramatic reduction occurred in the wake unsteadiness at all frequencies. The reduction of wake unsteadiness is consistent with the reduction in total drag already reported. Based on the present results and those reported earlier, the effects of natural ventilation on the flow past a sphere can be categorized in two broad regimes, viz., weak and strong interaction regimes. In the weak interaction regime (subcritical Re), the broad features of the basic sphere are largely unaltered despite the large addition of mass in the near wake. Strong interaction is promoted by the closer proximity of the inner and outer shear layers at supercritical Re. This results in a modified and steady near-wake flow, characterized by reduced unsteadiness and small drag.
Resumo:
The shear alignment of an initially disordered lamellar phase is examined using lattice Boltzmann simulations of a mesoscopic model based on a free-energy functional for the concentration modulation. For a small shear cell of width 8 lambda, the qualitative features of the alignment process are strongly dependent on the Schmidt number Sc = nu/D (ratio of kinematic viscosity and mass diffusion coefficient). Here, lambda is the wavelength of the concentration modulation. At low Schmidt number, it is found that there is a significant initial increase in the viscosity, coinciding with the alignment of layers along the extensional axis, followed by a decrease at long times due to the alignment along the flow direction. At high Schmidt number, alignment takes place due to the breakage and reformation of layers because diffusion is slow compared to shear deformation; this results in faster alignment. The system size has a strong effect on the alignment process; perfect alignment takes place for a small systems of width 8 lambda and 16 lambda, while a larger system of width 32 lambda does not align completely even at long times. In the larger system, there appears to be a dynamical steady state in which the layers are not perfectly aligned-where there is a balance between the annealing of defects due to shear and the creation due to an instability of the aligned lamellar phase under shear. We observe two types of defect creation mechanisms: the buckling instability under dilation, which was reported earlier, as well as a second mechanism due to layer compression.
Resumo:
An attempt has been made here to study the sensitivity of the mean and the turbulence structure of the monsoon trough boundary layer to the choice of the constants in the dissipation equation for two stations Delhi and Calcutta, using one-dimensional atmospheric boundary layer model with e-epsilon turbulence closure. An analytical discussion of the problems associated with the constants of the dissipation equation is presented. It is shown here that the choice of the constants in the dissipation equation is quite crucial and the turbulence structure is very sensitive to these constants. The modification of the dissipation equation adopted by earlier studies, that is, approximating the Tke generation (due to shear and buoyancy production) in the epsilon-equation by max (shear production, shear + buoyancy production), can be avoided by a suitable choice of the constants suggested here. The observed turbulence structure is better simulated with these constants. The turbulence structure simulation with the constants recommended by Aupoix et al (1989) (which are interactive in time) for the monsoon region is shown to be qualitatively similar to the simulation obtained with the constants suggested here, thus implying that no universal constants exist to regulate dissipation rate. Simulations of the mean structure show little sensitivity to the type of the closure parameterization between e-l and e-epsilon closures. However the turbulence structure simulation with e-epsilon closure is far better compared to the e-l model simulations. The model simulations of temperature profiles compare quite well with the observations whenever the boundary layer is well mixed (neutral) or unstable. However the models are not able to simulate the nocturnal boundary layer (stable) temperature profiles. Moisture profiles are simulated reasonably better. With one-dimensional models, capturing observed wind variations is not up to the mark.
Resumo:
Studies related to cavitation inception process in separated flows are reported. Experimental observations of bubble appearance in grooves with laminar or turbulent boundary layer over them have clearly shown that gaseous diffusion process is significantly enhanced in turbulent flow. This process can lead to local nuclei size modification in environment similar to that of flow over a groove, like laminar separation "bubbles." Cavitation inception modeling including this aspect is carried out for predicting inception conditions associated with "bubble-ring" cavitation commonly observed on hemispherically nosed axisymmetric body. Qualitative dependence of predicted inception numbers with velocity is found to agree very well with experimental observations of Carroll (1981).
Resumo:
Experiments were carried out investigating the features of mean and unsteady surface pressure fluctuations in boat-tail separated flows relevant to launch vehicle configurations at transonic speeds. The tests were performed on a generic axisymmetric body in the Mach-number range of 0.7-1.2, and the important geometrical parameters, namely, the boat-tail angle and diameter ratio, were varied systematically. The measurements made included primarily the mean and unsteady surface-pressure fluctuations on nine different model configurations. Flow-visualization studies employing a surface oil flow, and schlieren techniques were carried out to infer features like boundary-layer separation, reattachment, and shock waves in the flow. The features of mean and fluctuating surface pressures are discussed in detail including aspects of similarity. It has been observed that, on a generic configuration employed in the present study, the maximum levels of surface-pressure fluctuations in the reattachment zone are appreciably lower than those found on launch vehicle configurations having a bulbous or hammerhead nose shape. A simple correlation is suggested for the maximum value of rms pressure fluctuations in the reattachment zone at different freestream Mach numbers.
Resumo:
In this study, we analyse simultaneous measurements (at 50 Hz) of velocity at several heights and shear stress at the surface made during the Utah field campaign for the presence of ranges of scales, where distinct scale-to-scale interactions between velocity and shear stress can be identified. We find that our results are similar to those obtained in a previous study [Venugopal et al., 2003] (contrary to the claim in V2003, that the scaling relations might be dependent on Reynolds number) where wind tunnel measurements of velocity and shear stress were analysed. We use a wavelet-based scale-to-scale cross-correlation to detect three ranges of scales of interaction between velocity and shear stress, namely, (a) inertial subrange, where the correlation is negligible; (b) energy production range, where the correlation follows a logarithmic law; and (c) for scales larger than the boundary layer height, the correlation reaches a plateau.
Resumo:
Free energy barriers separating interfacial water molecules from the hydration layer at the surface of a protein to the bulk are obtained by using the umbrella sampling method of free energy calculation. We consider hydration layer of chicken villin head piece (HP-36) which has been studied extensively by molecular dynamics simulations. The free energy calculations reveal a strong sensitivity to the secondary structure. In particular, we find a region near the junction of first and second helix that contains a cluster of water molecules which are slow in motion, characterized by long residence times (of the order of 100 ps or more) and separated by a large free energy barrier from the bulk water. However, these ``slow'' water molecules constitute only about 5-10% of the total number of hydration layer water molecules. Nevertheless, they play an important role in stabilizing the protein conformation. Water molecules near the third helix (which is the important helix for biological function) are enthalpically least stable and exhibit the fastest dynamics. Interestingly, barrier height distributions of interfacial water are quite broad for water surrounding all the three helices (and the three coils), with the smallest barriers found for those near the helix-3. For the quasi-bound water molecules near the first and second helices, we use well-known Kramers' theory to estimate the residence time from the free energy surface, by estimating the friction along the reaction coordinate from the diffusion coefficient by using Einstein relation. The agreement found is satisfactory. We discuss the possible biological function of these slow, quasi-bound (but transient) water molecules on the surface.
Resumo:
The mechanical properties of clays are highly dependent not only on the stress/strain ratio to which the material is subjected but also on the chemistry of the pore fluids which in turn affects the intergranular or the effective stresses. Atterberg limits and vane shear tests were performed with different pore fluids in order to observe how the fine-grained material mechanically responded. The diffuse double layer theory has been used to interpret the data of vane shear tests in order to explain the variation of geotechnical responses with the different clays. Van der Waals forces and double layer forces were obtained and capillary forces calculated. The results show that while for kaolinite and illite the chemistry of the pore fluids has no influence on the water content and hence on the mechanical behaviour of the material, Na-smectite shows a strong correlation between the dielectric constant of the pore fluids and an increase in undrained shear strength. The data obtained extends an understanding of the influence of the dielectric constant (epsilon) of the pore fluids on the geotechnical properties of fine-grained materials.
Resumo:
The evolution of microstructure and texture gradient in warm Accumulative Roll Bonded Cu-Cu multilayer has been studied. Grain size distribution is multimodal and exhibits variation from middle to surface layer. Evolution of texture is largely influenced by shear, in addition to rolling deformation. This leads to the formation of a texture comprising of high fraction of Brass and rolling direction-rotated cube components. Partial recrystallization was observed. Deformed and recrystallized grains were separated using a partition scheme based on grain orientation spread and textures were analyzed for both the partition. Retention of deformation texture components in recrystallized grains suggests the mechanism of recrystallization as continuous recrystallization. Shear deformation plays an important role in grain refinement through continuous recrystallization. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
This paper is a review prepared for the second Marseille Colloquium on the mechanics of turbulence, held in 2011, 50 years after the first. The review covers recent developments in our understanding of the large-scale dynamics of cumulus cloud flows and of the atmospheric boundary layer in the low-wind convective regime that is often encountered in the tropics. It has recently been shown that a variety of cumulus cloud forms and life cycles can be experimentally realized in the laboratory, with the transient diabatic plume taken as the flow model for a cumulus cloud. The plume is subjected to diabatic heating scaled to be dynamically similar to heat release from phase changes in clouds. The experiments are complemented by exact numerical solutions of the Navier-Stokes-Boussinesq equations for plumes with scaled off-source heating. The results show that the Taylor entrainment coefficient first increases with heating, reaches a positive maximum and then drops rapidly to zero or even negative values. This reduction in entrainment is a consequence of structural changes in the flow, smoothing out the convoluted boundaries in the non-diabatic plume, including the tongues engulfing the ambient flow. This is accompanied by a greater degree of mixedness in the core flow because of lower dilution by the ambient fluid. The cloud forms generated depend strongly on the history of the diabatic heating profile in the vertical direction. The striking effects of heating on the flow are attributable to the operation of the baroclinic torque due to the temperature field. The mean baroclinic torque is shown to peak around a quasi-cylindrical sheet situated midway between the axis of the flow and the edges. This torque is shear-enhancing and folds down the engulfment tongues. The increase in mixedness can be traced to an explosive growth in the enstrophy, triggered by a strong fluctuating baroclinic torque that acts as a source, especially at the higher wave numbers, thus enhancing the mixedness. In convective boundary layers field measurements show that, under conditions prevailing in the tropics, the eddy fluxes of momentum and energy do not follow the Monin-Obukhov similarity. Instead, the eddy momentum flux is found to be linear in the wind speed at low winds; and the eddy heat flux is, to a first approximation, governed by free convection laws, with wind acting as a small perturbation on a regime of free convection. A new boundary layer code, based on heat flux scaling rather than wall-stress scaling, shows promising improvements in predictive skills of a general circulation model.
Resumo:
Exposure of few-layer MoS2, WS2 and MoSe2 to high-temperature shock waves causes morphological changes and a significant decrease in the interlayer separation between the (002) planes, the decrease being greatest in MoSe2. Raman spectra show softening of both the A(1g) and the E-2g(1) modes initially, followed by a slightly stiffening. Using first-principles density functional theoretical analysis of the response of few-layer MoS2 to shock waves, we propose that a combination of shear and uniaxial compressive deformation leads to flattening of MoS2 sheets which is responsible for the changes in the vibrational spectra. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
In this paper, linear stability analysis on a Newtonian fluid film flowing under the effect of gravity over an inclined porous medium saturated with the same fluid in isothermal condition is carried out. The focus is placed on the effect of the anisotropic and inhomogeneous variations in the permeability of the porous medium on the shear mode and surface mode instabilities. The fluid-porous system is modelled by a coupled two-dimensional Navier-Stokes/Darcy problem. The perturbation equations are solved numerically using the Chebyshev collocation method. Detailed stability characteristics as a function of the depth ratio (the ratio of the depth of the fluid layer to that of the porous layer), the anisotropic parameter (the ratio of the permeability in the direction of the basic flow to that in the direction transverse to the basic flow) and the inhomogeneity functions are presented.
Resumo:
Heat transfer rate and pressure measurements were made upstream of surface pro-tuberances on a flat plate and a sharp cone subjected to hypersonic flow in a conventional shock tunnel. Heat flux was measured using platinum thin-film sensors deposited on macor substrate and the pressure measurements were made using fast acting piezoelectric sensors. A distinctive hot spot with highest heat flux was obtained near the foot of the protuberance due to heavy vortex activity in the recirculating region. Schlieren flow visualization was used to capture the shock structures and the separation distance ahead of the protrusions was quantitatively measured for varying protuberance heights. A computational analysis was conducted on the flat plate model using commercial computational fluid dynamics software and the obtained trends of heat flux and pressure were compared with the experimental observation. Experiments were also conducted by physically disturbing the laminar boundary layer to check its effect on the magnitude of the hot spot heat flux. In addition to air, argon was also used as test gas so that the Reynolds number can be varied. (C) 2014 AIP Publishing LLC.
Resumo:
The linear stability analysis of a plane Couette flow of an Oldroyd-B viscoelastic fluid past a flexible solid medium is carried out to investigate the role of polymer addition in the stability behavior. The system consists of a viscoelastic fluid layer of thickness R, density rho, viscosity eta, relaxation time lambda, and retardation time beta lambda flowing past a linear elastic solid medium of thickness HR, density rho, and shear modulus G. The emphasis is on the high-Reynolds-number wall-mode instability, which has recently been shown in experiments to destabilize the laminar flow of Newtonian fluids in soft-walled tubes and channels at a significantly lower Reynolds number than that for flows in rigid conduits. For Newtonian fluids, the linear stability studies have shown that the wall modes become unstable when flow Reynolds number exceeds a certain critical value Re c which scales as Sigma(3/4), where Reynolds number Re = rho VR/eta, V is the top-plate velocity, and dimensionless parameter Sigma = rho GR(2)/eta(2) characterizes the fluid-solid system. For high-Reynolds-number flow, the addition of polymer tends to decrease the critical Reynolds number in comparison to that for the Newtonian fluid, indicating a destabilizing role for fluid viscoelasticity. Numerical calculations show that the critical Reynolds number could be decreased by up to a factor of 10 by the addition of small amount of polymer. The critical Reynolds number follows the same scaling Re-c similar to Sigma(3/4) as the wall modes for a Newtonian fluid for very high Reynolds number. However, for moderate Reynolds number, there exists a narrow region in beta-H parametric space, corresponding to very dilute polymer solution (0.9 less than or similar to beta < 1) and thin solids (H less than or similar to 1.1), in which the addition of polymer tends to increase the critical Reynolds number in comparison to the Newtonian fluid. Thus, Reynolds number and polymer properties can be tailored to either increase or decrease the critical Reynolds number for unstable modes, thus providing an additional degree of control over the laminar-turbulent transition.
Resumo:
Experimental and numerical investigations were carried out using lamb waves to study the degradation in adhesive joints made of carbon fiber reinforced plastic (CFRP) adherends and epoxy adhesive. Degradation was inducted into the epoxy adhesive by adding different amounts of polyvinyl alcohol. Fundamental lamb wave modes were excited in the CFRP adherends using piezoelectric transducer disks and made to propagate through the adhesive layer. The received waveforms across adhesive joints with varied degradation were studied. A 2D finite element model was utilized to verify the experimental results. Good correlation was observed between numerical and experimental results. Details of the investigation and results obtained are presented in the paper.