995 resultados para sensitive nerve conduction velocity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We postulated that neuromuscular disuse results in deleteriously affected tissue-vascular fluid exchange processes and subsequently damages the important oxidative bioenergetic process of intramuscular lipid metabolism. The in-depth research reported in the literature is somewhat limited by the ex vivo nature and sporadic time-course characterization of disuse atrophy and recovery. Thus, an in vivo controlled, localized animal model of disuse atrophy was developed in one of the hindlimbs of laboratory rabbits (employing surgically implanted tetrodotoxin (TTX)-filled mini-osmotic pump-sciatic nerve superfusion system) and tested repeatedly with magnetic resonance (MR) throughout the 2-week period of temporarily induced disuse and during the recovery period (following explantation of the TTX-filled pump) for a period of 3 weeks. Controls consisted of saline/"sham"-implanted rabbit hindlimbs. The validity of this model was established with repeated electrophysiologic nerve conduction testing using a clinically appropriate protocol and percutaneously inserted small needle stimulating and recording electrodes. Evoked responses recorded from proximal (P) and distal (D) sites to the sciatic nerve cuff in the TTX-implanted group revealed significantly decreased (p $<$ 0.001) proximal-to-distal (P/D) amplitude ratios (as much as 50-70% below Baseline/pre-implanted and sham-implanted group values) and significantly increased (p $<$ 0.01) differential latency (PL-DL) values (as much as 1.5 times the pre- and sham-implanted groups). By Day 21 of recovery, observed P/D and PL-DL levels matched Baseline/sham-implemented levels. MRI-determined cross-sectional area (CSA) values of Baseline/pre-implanted, sham- or TTX-implanted, and recovering/explanted and the corresponding contralateral hindlimb tibialis anterior (TA) muscles normalized to tibial bone (TB) CSA (in TA/TB ratios) revealed that there was a significant decline (indicative of atrophic response) from pre- and sham-implanted controls by as much as 20% (p $<$ 0.01) at Day 7 and 50-55% (p $<$ 0.001) at Day 13 of TTX-implantation. In the non-implanted contralaterals, a significant increase (indicative of hypertrophic response) by as much as 10% (p $<$ 0.025) at Day 7 and 27% (p $<$ 0.001) at Day 13 + TTX was found. The induced atrophic/hypertrophic TA muscles were observed to be fully recovered by Day 21 post-explantation as evidenced by image TA/TB ratios. End-point biopsy results from a small group of rabbits revealed comprehensive atrophy of both Type I and Type II fibers, although the heterogeneity of the response supports the use of image-guided, volume-localized proton magnetic resonance spectroscopy (MRS) to noninvasively assess tissue-level metabolic changes. MRS-determined results of a 0.25cc volume of tissue within implanted limb TA muscles under resting/pre-ischemic, ischemic-stressed, and post-ischemic conditions at timepoints during and following disuse atrophy/recovery revealed significantly increased intramuscular spectral lipid levels, as much as 2-3 times (p $<$ 0.01) the Baseline/pre-implanted values at Day 7 and 6-7 times (p $<$ 0.001) at Day 13 + TTX, which approached normal levels (compared to pre- and sham-implanted groups) by Day 21 of post-explanation recovery. (Abstract shortened by UMI.) ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Standard needle electromyography (EMG) of 56 muscles and nerve conduction velocities (NCV) of the ulnar and common peroneal nerves were investigated in each of six cats affected with hypertrophic feline muscular dystrophy, 10 related heterozygote carriers and 10 normal cats. The EMG findings were considered normal in carrier and control cats, and consisted of 33% normal readings, 22% myotonic discharges, 18% fibrillation potentials, 11% prolonged insertional potentials, 10% complex repetitive discharges and 6% positive sharp waves in affected cats. Muscles of the proximal limbs were most frequently affected. No differences in NCV were found between the three cat groups. It was concluded that dystrophin-deficient dystrophic cats have widespread and frequent EMG changes, predominantly myotonic discharges and fibrillation potentials, which are most pronounced in the proximal appendicular muscles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Sodium channel NaV1.5 underlies cardiac excitability and conduction. The last 3 residues of NaV1.5 (Ser-Ile-Val) constitute a PDZ domain-binding motif that interacts with PDZ proteins such as syntrophins and SAP97 at different locations within the cardiomyocyte, thus defining distinct pools of NaV1.5 multiprotein complexes. Here, we explored the in vivo and clinical impact of this motif through characterization of mutant mice and genetic screening of patients. METHODS AND RESULTS To investigate in vivo the regulatory role of this motif, we generated knock-in mice lacking the SIV domain (ΔSIV). ΔSIV mice displayed reduced NaV1.5 expression and sodium current (INa), specifically at the lateral myocyte membrane, whereas NaV1.5 expression and INa at the intercalated disks were unaffected. Optical mapping of ΔSIV hearts revealed that ventricular conduction velocity was preferentially decreased in the transversal direction to myocardial fiber orientation, leading to increased anisotropy of ventricular conduction. Internalization of wild-type and ΔSIV channels was unchanged in HEK293 cells. However, the proteasome inhibitor MG132 rescued ΔSIV INa, suggesting that the SIV motif is important for regulation of NaV1.5 degradation. A missense mutation within the SIV motif (p.V2016M) was identified in a patient with Brugada syndrome. The mutation decreased NaV1.5 cell surface expression and INa when expressed in HEK293 cells. CONCLUSIONS Our results demonstrate the in vivo significance of the PDZ domain-binding motif in the correct expression of NaV1.5 at the lateral cardiomyocyte membrane and underline the functional role of lateral NaV1.5 in ventricular conduction. Furthermore, we reveal a clinical relevance of the SIV motif in cardiac disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

L'activité électrique du coeur est initiée par la génération spontanée de potentiels d'action venant des cellules pacemaker du noeud sinusal (SN). Toute dysfonction au niveau de cette région entraîne une instabilité électrique du coeur. La majorité des patients souffrant d'un noeud sinusal déficient nécessitent l'implantation chirurgicale d'un pacemaker électronique; cependant, les limitations de cette approche incitent à la recherche d'une alternative thérapeutique. La base moléculaire des courants ioniques jouant un rôle crucial dans l'activité du noeud sinusal sont de plus en plus connues. Une composante importante de l'activité des cellules pacemakers semble être le canal HCN, responsable du courant pacemaker If. Le facteur T-box 3 (Tbx3), un facteur de transcription conservé durant le processus de l'évolution, est nécessaire au développement du système de conduction cardiaque. De précédentes études ont démontré que dans différentes lignées cellulaires le Phorbol 12-myristate 13-acetate (PMA) active l'expression du gène codant Tbx3 via des réactions en cascade partant de la protéine kinase C (PKC). L'objectif principal de cette étude est de tester si le PMA peut augmenter la fréquence et la synchronisation de l'activité spontanée du pacemaker biologique en culture. Plus précisément, nous avons étudié les effets de l'exposition chronique au PMA sur l'expression du facteur de transcription Tbx3, sur HCN4 et l'activité spontanée chez des monocouches de culture de myocytes ventriculaires de rats néonataux (MVRN). Nos résultats démontrent que le PMA augmente significativement le facteur transcription de Tbx3 et l'expression ARNm de HCN4, favorisant ainsi l'augmentation du rythme et de la stabilité de l'activité autonome. De plus, une diminution significative de la vitesse de conduction a été relevée et est attribuée à la diminution du couplage intercellulaire. La diminution de la vitesse de conduction pourrait expliquer l'effet négatif du PMA sur la synchronisation de l'activité autonome du pacemaker biologique. Ces résultats ont été confirmés par un modèle mathématique multicellulaire suggérant que des fréquences et résistances intercellulaires plus élevée pourraient induire une activité plus stable et moins synchrone. Cette étude amène de nouvelles connaissances très importantes destinées à la production d'un pacemaker biologique efficient et robuste.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: This study compared the neuromuscular efficiency (NME) of the sternocleidomastoid (SCM) and anterior scalene (AS) muscles between 20 chronic neck pain patients and 20 asymptomatic controls. Method: Myoelectric signals were recorded from the sternal head of SCM and the AS muscles as subjects performed sub-maximal isometric cervical flexion contractions at 25 and 50% of the maximum voluntary contraction (MVC). The NME was calculated as the ratio between MVC and the corresponding average rectified value of the EMG signal. Ultrasonography was used to measure subcutaneous tissue thickness over the SCM and AS to ensure that differences did not exist between groups. Results: For both the SCM and AS muscles, NME was shown to be significantly reduced in patients with neck pain at 25% MVC (p < 0.05). Subcutaneous tissue thickness over the SCM and AS muscles was not different between groups. Conclusions: Reduced NME in the superficial cervical flexor muscles in patients with neck pain may be a measurable altered muscle strategy for dysfunction in other muscles. This aberrant pattern of muscle activation appears to be most evident under conditions of low load. NME, when measured at 25% MVC, may be a useful objective measure for future investigation of muscle dysfunction in patients with neck pain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the evidence of greater fatigability of the cervical flexor muscles in neck pain patients, the effect of unilaterality of neck pain on muscle fatigue has not been investigated. This study compared myoelectric manifestations of sternocleidomastoid (SCM) and anterior scalene (AS) muscle fatigue between the painful and non-painful sides in patients with chronic unilateral neck pain. Myoelectric signals were recorded from the sternal head of SCM and the AS muscles bilaterally during sub-maximal isometric cervical flexion contractions at 25% and 50% of the maximum voluntary contraction (MVC). The time course of the mean power frequency, average rectified value and conduction velocity of the electromyographic signals were calculated to quantify myoelectric manifestations of muscle fatigue. Results revealed greater estimates of the initial value and slope of the mean frequency for both the SCM and AS muscles on the side of the patient's neck pain at 25% and 50% of MVC. These results indicate greater myoelectric manifestations of muscle fatigue of the superficial cervical flexor muscles ipsilateral to the side of pain. This suggests a specificity of the effect of pain on muscle function and hence the need for specificity of therapeutic exercise in the management of neck pain patients. (C) 2003 European Federation of Chapters of the International Association for the Study of Pain. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The sartorius muscle is the longest muscle in the human body. It is strap-like, up to 600 mm in length, and contains five to seven neurovascular compartments, each with a neuromuscular endplate zone. Some of its fibers terminate intrafascicularly, whereas others may run the full length of the muscle. To assess the location and timing of activation within motor units of this long muscle, we recorded electromyographic potentials from multiple intramuscular electrodes along sartorius muscle during steady voluntary contraction and analyzed their activity with spike-triggered averaging from a needle electrode inserted near the proximal end of the muscle. Approximately 30% of sartorius motor units included muscle fibers that ran the full length of the muscle, conducting action potentials at 3.9 +/- 0.1 m/s. Most motor units were innervated within a single muscle endplate zone that was not necessarily near the midpoint of the fiber. As a consequence, action potentials reached the distal end of a unit as late as 100 ms after initiation at an endplate zone. Thus, contractile activity is not synchronized along the length of single sartorius fibers. We postulate that lateral transmission of force from fiber to endomysium and a wide distribution of motor unit endplates along the muscle are critical for the efficient transmission of force from sarcomere to tendon and for the prevention of muscle injury caused by overextension of inactive regions of muscle fibers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: The purpose of this study was to investigate whether an endurance-strength training program is effective in reducing myoelectric manifestations of sternocleidomastoid (SCM) and anterior scalene (AS) muscle fatigue which have been found to be greater in people with chronic neck pain. Methods: Fifty-eight female patients with chronic non-severe neck pain were randomized into one of two 6-week exercise intervention groups: an endurance-strength training regime for the cervical flexor muscles or a referent exercise intervention involving low load retraining of the cranio-cervical flexor muscles. The primary outcomes were a change in maximum voluntary contraction (MVC) force and change of the initial value and rate of change of the mean frequency, average rectified value and conduction velocity detected from the SCM and AS muscles during sub-maximal isometric cervical flexion contractions at 50, 25 and 10% MVC. Results: At the 7th week follow-up assessment, the endurance-strength training group revealed a significant increase in MVC force and a reduction in the estimates of the initial value and rate of change of the mean frequency for both the SCM and AS muscles (P < 0.05). Both exercise groups reported a reduced average intensity of neck pain and reduced neck disability index score (P < 0.05). Conclusions: An endurance-strength exercise regime for the cervical flexor muscles is effective in reducing myoelectric manifestations of superficial cervical flexor muscle fatigue as well as increasing cervical flexion strength in a group of patients with chronic non-severe neck pain. Significance: Provision of load to challenge the neck flexor muscles is required to reduce the fatigability of the SCM and AS muscles in people with neck pain. Improvements in cervical muscle strength and reduced fatigability may be responsible for the reported efficacy with this type of exercise program. (c) 2006 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All fights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

International audience

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study was undertaken to test whether recovery cycle measurements can provide useful information about the membrane potential of human muscle fibers. Multifiber responses to direct muscle stimulation through needle electrodes were recorded from the brachioradialis of healthy volunteers, and the latency changes measured as conditioning stimuli were applied at interstimulus intervals of 2-1000 ms. In all subjects, the relative refractory period (RRP), which lasted 3.27 +/- 0.45 ms (mean +/- SD, n = 12), was followed by a phase of supernormality, in which the velocity increased by 9.3 +/- 3.4% at 6.1 +/- 1.3 ms, and recovered over 1 s. A broad hump of additional supernormality was seen at around 100 ms. Extra conditioning stimuli had little effect on the early supernormality but increased the later component. The two phases of supernormality resembled early and late afterpotentials, attributable respectively to the passive decay of membrane charge and potassium accumulation in the t-tubules. Five minutes of ischemia progressively prolonged the RRP and reduced supernormality, confirming that these parameters are sensitive to membrane depolarization. Velocity recovery cycles may provide useful information about altered muscle membrane potential and t-tubule function in muscle disease. Muscle Nerve, 2008.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Combined conduction–convection–radiation heat transfer is investigated numerically in a micro-channel filled with a saturated cellular porous medium, with the channel walls held at a constant heat flux. Invoking the velocity slip and temperature jump, the thermal behaviour of the porous–fluid system are studied by considering hydrodynamically fully developed flow and applying the Darcy–Brinkman flow model. One energy equation model based on the local thermal equilibrium condition is adopted to evaluate the temperature field within the porous medium. Combined conduction and radiation heat transfer is treated as an effective conduction process with a temperature-dependent effective thermal conductivity. Results are reported in terms of the average Nusselt number and dimensionless temperature distribution, as a function of velocity slip coefficient, temperature jump coefficient, porous medium shape parameter and radiation parameters. Results show that increasing the radiation parameter (Tr)(Tr) and the temperature jump coefficient flattens the dimensionless temperature profile. The Nusselt numbers are more sensitive to the variation in the temperature jump coefficient rather than to the velocity slip coefficient. Such that for high porous medium shape parameter, the Nusselt number is found to be independent of velocity slip. Furthermore, it is found that as the temperature jump coefficient increases, the Nusselt number decrease. In addition, for high temperature jump coefficients, the Nusselt number is found to be insensitive to the radiation parameters and porous medium shape parameter. It is also concluded that compared with the conventional macro-channels, wherein using a porous material enhances the rate of heat transfer (up to about 40 % compared to the clear channel), insertion of a porous material inside a micro-channel in slip regime does not effectively enhance the rate of heat transfer that is about 2 %.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diagnostic imaging techniques play an important role in assessing the exact location, cause, and extent of a nerve lesion, thus allowing clinicians to diagnose and manage more effectively a variety of pathological conditions, such as entrapment syndromes, traumatic injuries, and space-occupying lesions. Ultrasound and nuclear magnetic resonance imaging are becoming useful methods for this purpose, but they still lack spatial resolution. In this regard, recent phase contrast x-ray imaging experiments of peripheral nerve allowed the visualization of each nerve fiber surrounded by its myelin sheath as clearly as optical microscopy. In the present study, we attempted to produce high-resolution x-ray phase contrast images of a human sciatic nerve by using synchrotron radiation propagation-based imaging. The images showed high contrast and high spatial resolution, allowing clear identification of each fascicle structure and surrounding connective tissue. The outstanding result is the detection of such structures by phase contrast x-ray tomography of a thick human sciatic nerve section. This may further enable the identification of diverse pathological patterns, such as Wallerian degeneration, hypertrophic neuropathy, inflammatory infiltration, leprosy neuropathy and amyloid deposits. To the best of our knowledge, this is the first successful phase contrast x-ray imaging experiment of a human peripheral nerve sample. Our long-term goal is to develop peripheral nerve imaging methods that could supersede biopsy procedures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The neurohistologic observations were performed using the specimens prepared by Winkelmann and Schmitt silver impregnation method. The tissues were fixed in 10% formalin solution and sections of 40µm thickness were obtained by Leica Cryostat at -30ºC. The sections of dorsal mucosa of White-lipped peccary tongue showed numerous filliform and fungiform papillae, and two vallate papillae on the caudal part. The epithelial layer revealed queratinized epithelial cells and the connective tissue papillae of different sizes and shapes. Thick nerve fiber bundles are noted into the subepithelial connective tissue of the papillae. The connective tissue of fungiform and vallate papillae contained numerous sensitive nerves fibers bundles forming a complex nerve plexus.