959 resultados para satellite segment
Resumo:
OBJECTIVE: To assess the impact of introducing clinical practice guidelines on acute coronary syndrome without persistent ST segment elevation (ACS) on patient initial assessment. DESIGN: Prospective before-after evaluation over a 3-month period. SETTING: The emergency ward of a tertiary teaching hospital. PATIENTS: All consecutive patients with ACS evaluated in the emergency ward over the two 3-month periods. INTERVENTION: Implementation of the practice guidelines, and the addition of a cardiology consultant to the emergency team. MAIN OUTCOME MEASURES: Diagnosis, electrocardiogram interpretation, and risk stratification after the initial evaluation. RESULTS: The clinical characteristics of the 328 and 364 patients evaluated in the emergency ward for suspicion of ACS before and after guideline implementation were similar. Significantly more patients were classified as suffering from atypical chest pain (39.6% versus 47.0%; P = 0.006) after guideline implementation. Guidelines availability was associated with significantly more formal diagnoses (79.9% versus 92.9%; P < 0.0001) and risk stratification (53.7% versus 65.4%, P < 0.0001) at the end of initial assessment. CONCLUSION: Guidelines implementation, along with availability of a cardiology consultant in the emergency room had a positive impact on initial assessment of patients evaluated for suspicion of ACS. It led to increased confidence in diagnosis and stratification by risk, which are the first steps in initiating effective treatment for this common condition.
Resumo:
Usually the measurement of multi-segment foot and ankle complex kinematics is done with stationary motion capture devices which are limited to use in a gait laboratory. This study aimed to propose and validate a wearable system to measure the foot and ankle complex joint angles during gait in daily conditions, and then to investigate its suitability for clinical evaluations. The foot and ankle complex consisted of four segments (shank, hindfoot, forefoot, and toes), with an inertial measurement unit (3D gyroscopes and 3D accelerometers) attached to each segment. The angles between the four segments were calculated in the sagittal, coronal, and transverse planes using a new algorithm combining strap-down integration and detection of low-acceleration instants. To validate the joint angles measured by the wearable system, three subjects walked on a treadmill for five minutes at three different speeds. A camera-based stationary system that used a cluster of markers on each segment was used as a reference. To test the suitability of the system for clinical evaluation, the joint angle ranges were compared between a group of 10 healthy subjects and a group of 12 patients with ankle osteoarthritis, during two 50-m walking trials where the wearable system was attached to each subject. On average, over all joints and walking speeds, the RMS differences and correlation coefficients between the angular curves obtained using the wearable system and the stationary system were 1 deg and 0.93, respectively. Moreover, this system was able to detect significant alteration of foot and ankle function between the group of patients with ankle osteoarthritis and the group of healthy subjects. In conclusion, this wearable system was accurate and suitable for clinical evaluation when used to measure the multi-segment foot and ankle complex kinematics during long-distance walks in daily life conditions.
Resumo:
AIM: To report the results of whole anterior segment proton beam radiotherapy (PBR) for diffuse iris melanoma. METHODS: Between 2000 and 2011, 12 patients with iris melanoma received PBR to the entire iris and ciliary body. RESULTS: Patients had a mean age of 57 years and a median follow-up of 3.5 years (range 1-11.6 years). Tumour iris involvement was 1-4 h in five patients, 5-8 h in four and 9-12 h in three. Angle involvement was 6-8 h in five patients and 9-12 h in seven. The visual acuity (VA) before treatment was 6/5-6/6 in six patients, 6/8-6/9 in three and 6/18-6/38 in three. No tumour recurrence occurred during the follow-up period. Glaucoma treatment was required in 11 of 12 patients. The visual acuity at the last follow-up was 6/5-6/9 in five patients, 6/18-6/24 in three, 6/60-1/60 in two and no light perception in two. Four patients developed varying non-severe degrees of limbal stem cell deficiency, which was treatable with conservative measures. CONCLUSIONS: Whole anterior segment PBR is a useful alternative to enucleation for diffuse iris melanoma. Most patients will need treatment for glaucoma and some may require treatment for tear-film instability and/or stem cell failure.
Resumo:
PURPOSE: To describe the use of anterior segment optical coherence tomography (AS-OCT) to clarify the position and patency of aqueous shunt devices in the anterior chamber of eyes where corneal edema or tube position does not permit a satisfactory view. DESIGN: Noncomparative observational case series. METHODS: Four cases are reported in which aqueous shunt malposition or obstruction was suspected but the shunt could not be seen on clinical examination. The patients underwent AS-OCT to identify the position and patency of the shunt tip. RESULTS: In each case, AS-OCT provided data regarding tube position and/or patency that could not be obtained by slit-lamp examination or by gonioscopy that influenced management. CONCLUSIONS: AS-OCT can be used to visualize anterior chamber tubes in the presence of corneal edema that precludes an adequate view or in cases where the tube is retracted into the cornea. In such cases, AS-OCT is useful in identifying shunt patency and position, which helps guide clinical decision making.
Resumo:
Retinal diseases are nowadays the most common causes of vision threatening in developed countries. Therapeutic advances in this field are hindered by the difficulty to deliver drugs to the posterior segment of the eye. Due to anatomical barriers, the ocular biodisponibility of systemically administered drugs remains poor, and topical instillation is not adequate to achieve therapeutic concentrations of drugs in the back of the eye. Ocular drug delivery has thus become one of the main challenges of modern ophthalmology. A multidisciplinary research is being conducted worldwide including pharmacology, biomaterials, ophthalmology, pharmaceutics, and biology. New promising fields have been developed such as implantable or injectable slow release intravitreal devices and degradable polymers, dispersed polymeric systems for intraocular drug delivery, and transscleral delivery devices such as iontophoresis, osmotic pumps or intra-scleraly implantable materials. The first clinical applications emerging from this research are now taking place, opening new avenues for the treatment of retinal diseases.
Resumo:
Background: Anterior ciliary arteries travelling along recti muscles provide anterior segment vascularization, which can be compromised by surgery involving more than 2 muscles.Patients and Methods: We studied retrospectively the files of 10 patients in whom a fluorescein angiography of the iris had been performed as a pre-operative assessment prior to a second or third oculomotor surgery.Results: The median age of the patients was 47.5 years (range 15 to 73 years). Relative iris ischemia was present in 4 patients following multiple surgeries, none of them presenting any general cardiovascular risk. The initial surgical protocol was modified according to angiographic results in these 4 patients.Conclusion: When further surgery has to be performed on previously multi-operated patients, anterior segment angiography can be useful in the planning of surgery in order to minimize the risks of anterior segment ischemia.
Resumo:
The development of new drug delivery systems to target the anterior segment of the eye may offer many advantages: to increase the biodisponibility of the drug, to allow the penetration of drug that cannot be formulated as solutions, to obtain constant and sustained drug release, to achieve higher local concentrations without systemic effects, to target more specifically one tissue or cell type, to reduce the frequency of instillation and therefore increase the observance and comfort of the patient while reducing side effects of frequent instillation. Several approaches are developed, aiming to increase the corneal contact time by modified formulation or reservoir systems, or by increasing the tissue permeability using iontophoresis. To date, no ocular drug delivery system is ideal for all purposes. To maximize treatment efficacy, careful evaluation of the specific pathological condition, the targeted Intraocular tissue and the location of the most severe pathology must be made before selecting the method of delivery most suitable for each individual patient.
Resumo:
PURPOSE: This descriptive article illustrates the application of Global Positioning System (GPS) professional receivers in the field of locomotion studies. The technological challenge was to assess the external mechanical work in outdoor walking. METHODS: Five subjects walked five times during 5 min on an athletic track at different imposed stride frequency (from 70-130 steps x min(-1)). A differential GPS system (carrier phase analysis) measured the variation of the position of the trunk at 5 Hz. A portable indirect calorimeter recorded breath-by-breath energy expenditure. RESULTS: For a walking speed of 1.05 +/- 0.11 m x s(-1), the vertical lift of the trunk (43 +/- 14 mm) induced a power of 46.0 +/- 20.4 W. The average speed variation per step (0.15 +/- 0.03 m x s(-1)) produced a kinetic power of 16.9 +/- 7.2 W. As compared with commonly admitted values, the energy exchange (recovery) between the two energy components was low (39.1 +/- 10.0%), which induced an overestimated mechanical power (38.9 +/- 18.3 W or 0.60 W x kg(-1) body mass) and a high net mechanical efficiency (26.9 +/- 5.8%). CONCLUSION: We assumed that the cause of the overestimation was an unwanted oscillation of the GPS antenna. It is concluded that GPS (in phase mode) is now able to record small body movements during human locomotion, and constitutes a promising tool for gait analysis of outdoor unrestrained walking. However, the design of the receiver and the antenna must be adapted to human experiments and a thorough validation study remains to be conducted.
Resumo:
Activity monitors based on accelerometry are used to predict the speed and energy cost of walking at 0% slope, but not at other inclinations. Parallel measurements of body accelerations and altitude variation were studied to determine whether walking speed prediction could be improved. Fourteen subjects walked twice along a 1.3 km circuit with substantial slope variations (-17% to +17%). The parameters recorded were body acceleration using a uni-axial accelerometer, altitude variation using differential barometry, and walking speed using satellite positioning (DGPS). Linear regressions were calculated between acceleration and walking speed, and between acceleration/altitude and walking speed. These predictive models, calculated using the data from the first circuit run, were used to predict speed during the second circuit. Finally the predicted velocity was compared with the measured one. The result was that acceleration alone failed to predict speed (mean r = 0.4). Adding altitude variation improved the prediction (mean r = 0.7). With regard to the altitude/acceleration-speed relationship, substantial inter-individual variation was found. It is concluded that accelerometry, combined with altitude measurement, can assess position variations of humans provided inter-individual variation is taken into account. It is also confirmed that DGPS can be used for outdoor walking speed measurements, opening up new perspectives in the field of biomechanics.
Resumo:
The action of the thyroid hormones on responsive cells in the peripheral nervous system requires the presence of nuclear triiodothyronine receptors (NT3R). These nuclear receptors, including both the alpha and beta subtypes of NT3R, were visualized by immunocytochemistry with the specific 2B3 monoclonal antibody. In the dorsal root ganglia (DRG) of rat embryos, NT3R immunoreactivity was first discretely revealed in a few neurons at embryonic day 14 (E14), then strongly expressed by all neurons at E17 and during the first postnatal week; all DRG neurons continued to possess clear NT3R immunostaining, which faded slightly with age. The peripheral glial cells in the DRG displayed a short-lived NT3R immunoreaction, starting at E17 and disappearing from the satellite and Schwann cells by postnatal days 3 and 7 respectively. In the developing sciatic nerve, Schwann cells also exhibited transient NT3R immunoreactivity restricted to a short period ranging from E17 to postnatal day 10; the NT3R immunostaining of the Schwann cells vanished proximodistally along the sciatic nerve, so that the Schwann cells rapidly became free of detectable NT3R immunostaining. However, after the transection or crushing of an adult sciatic nerve, the NT3R immunoreactivity reappeared in the Schwann cells adjacent to the lesion by 2 days, then along the distal segment in which the axons were degenerating, and finally disappeared by 45 days, when the regenerating axons were allowed to re-occupy the distal segment.(ABSTRACT TRUNCATED AT 250 WORDS)