905 resultados para root mean square roughness
Resumo:
Atrial fibrillation (AF) is the most common tachyarrhythmia and is associated with substantial morbidity, increased mortality and cost. The treatment modalities of AF have increased, but results are still far from optimal. More individualized therapy may be beneficial. Aiming for this calls improved diagnostics. Aim of this study was to find non-invasive parameters obtained during sinus rhythm reflecting electrophysiological patterns related to propensity to AF and particularly to AF occurring without any associated heart disease, lone AF. Overall 240 subjects were enrolled, 136 patients with paroxysmal lone AF and 104 controls (mean age 45 years, 75% males). Signal measurements were performed by non-invasive magnetocardiography (MCG) and by invasive electroanatomic mapping (EAM). High-pass filtering techniques and a new method based on a surface gradient technique were adapted to analyze atrial MCG signal. The EAM was used to elucidate atrial activation in patients and as a reference for MCG. The results showed that MCG mapping is an accurate method to detect atrial electrophysiologic properties. In lone paroxysmal AF, duration of the atrial depolarization complex was marginally prolonged. The difference was more obvious in women and was also related to interatrial conduction patterns. In the focal type of AF (75%), the root mean square (RMS) amplitudes of the atrial signal were normal, but in AF without demonstrable triggers the late atrial RMS amplitudes were reduced. In addition, the atrial characteristics tended to remain similar even when examined several years after the first AF episodes. The intra-atrial recordings confirmed the occurrence of three distinct sites of electrical connection from right to left atrium (LA): the Bachmann bundle (BB), the margin of the fossa ovalis (FO), and the coronary sinus ostial area (CS). The propagation of atrial signal could also be evaluated non-invasively. Three MCG atrial wave types were identified, each of which represented a distinct interatrial activation pattern. In conclusion, in paroxysmal lone AF, active focal triggers are common, atrial depolarization is slightly prolonged, but with a normal amplitude, and the arrhythmia does not necessarily lead to electrical or mechanical dysfunction of the atria. In women the prolongation of atrial depolarization is more obvious. This may be related to gender differences in presentation of AF. A significant minority of patients with lone AF lack frequent focal triggers, and in them, the late atrial signal amplitude is reduced, possibly signifying a wider degenerative process in the LA. In lone AF, natural impulse propagation to LA during sinus rhythm goes through one or more of the principal pathways described. The BB is the most common route, but in one-third, the earliest LA activation occurs outside the BB. Susceptibility to paroxysmal lone AF is associated with propagation of the atrial signal via the margin of the FO or via multiple pathways. When conduction occurs via the BB, it is related with prolonged atrial activation. Thus, altered and alternative conduction pathways may contribute to pathogenesis of lone AF. There is growing evidence of variability in genesis of AF also within lone paroxysmal AF. Present study suggests that this variation may be reflected in cardiac signal pattern. Recognizing the distinct signal profiles may assist in understanding the pathogenesis of AF and identifying subgroups for patient-tailored therapy.
Resumo:
This study examines the properties of Generalised Regression (GREG) estimators for domain class frequencies and proportions. The family of GREG estimators forms the class of design-based model-assisted estimators. All GREG estimators utilise auxiliary information via modelling. The classic GREG estimator with a linear fixed effects assisting model (GREG-lin) is one example. But when estimating class frequencies, the study variable is binary or polytomous. Therefore logistic-type assisting models (e.g. logistic or probit model) should be preferred over the linear one. However, other GREG estimators than GREG-lin are rarely used, and knowledge about their properties is limited. This study examines the properties of L-GREG estimators, which are GREG estimators with fixed-effects logistic-type models. Three research questions are addressed. First, I study whether and when L-GREG estimators are more accurate than GREG-lin. Theoretical results and Monte Carlo experiments which cover both equal and unequal probability sampling designs and a wide variety of model formulations show that in standard situations, the difference between L-GREG and GREG-lin is small. But in the case of a strong assisting model, two interesting situations arise: if the domain sample size is reasonably large, L-GREG is more accurate than GREG-lin, and if the domain sample size is very small, estimation of assisting model parameters may be inaccurate, resulting in bias for L-GREG. Second, I study variance estimation for the L-GREG estimators. The standard variance estimator (S) for all GREG estimators resembles the Sen-Yates-Grundy variance estimator, but it is a double sum of prediction errors, not of the observed values of the study variable. Monte Carlo experiments show that S underestimates the variance of L-GREG especially if the domain sample size is minor, or if the assisting model is strong. Third, since the standard variance estimator S often fails for the L-GREG estimators, I propose a new augmented variance estimator (A). The difference between S and the new estimator A is that the latter takes into account the difference between the sample fit model and the census fit model. In Monte Carlo experiments, the new estimator A outperformed the standard estimator S in terms of bias, root mean square error and coverage rate. Thus the new estimator provides a good alternative to the standard estimator.
Resumo:
The most difficult operation in flood inundation mapping using optical flood images is to map the ‘wet’ areas where trees and houses are partly covered by water. This can be referred to as a typical problem of the presence of mixed pixels in the images. A number of automatic information extracting image classification algorithms have been developed over the years for flood mapping using optical remote sensing images, with most labelling a pixel as a particular class. However, they often fail to generate reliable flood inundation mapping because of the presence of mixed pixels in the images. To solve this problem, spectral unmixing methods have been developed. In this thesis, methods for selecting endmembers and the method to model the primary classes for unmixing, the two most important issues in spectral unmixing, are investigated. We conduct comparative studies of three typical spectral unmixing algorithms, Partial Constrained Linear Spectral unmixing, Multiple Endmember Selection Mixture Analysis and spectral unmixing using the Extended Support Vector Machine method. They are analysed and assessed by error analysis in flood mapping using MODIS, Landsat and World View-2 images. The Conventional Root Mean Square Error Assessment is applied to obtain errors for estimated fractions of each primary class. Moreover, a newly developed Fuzzy Error Matrix is used to obtain a clear picture of error distributions at the pixel level. This thesis shows that the Extended Support Vector Machine method is able to provide a more reliable estimation of fractional abundances and allows the use of a complete set of training samples to model a defined pure class. Furthermore, it can be applied to analysis of both pure and mixed pixels to provide integrated hard-soft classification results. Our research also identifies and explores a serious drawback in relation to endmember selections in current spectral unmixing methods which apply fixed sets of endmember classes or pure classes for mixture analysis of every pixel in an entire image. However, as it is not accurate to assume that every pixel in an image must contain all endmember classes, these methods usually cause an over-estimation of the fractional abundances in a particular pixel. In this thesis, a subset of adaptive endmembers in every pixel is derived using the proposed methods to form an endmember index matrix. The experimental results show that using the pixel-dependent endmembers in unmixing significantly improves performance.
Resumo:
Nanostructured ZnFe2O4 ferrites with different grain sizes were prepared by high energy ball milling for various milling times. Both the average grain size and the root mean square strain were estimated from the x-ray diffraction line broadening. The lattice parameter initially decreases slightly with milling and it increases with further milling. The magnetization is found to increase as the grain size decreases and its large value is attributed to the cation inversion associated with grain size reduction. The Fe-57 Mossbauer spectra were recorded at 300 K and 77 K for the samples with grain sizes of 22 and 11 nm. There is no evidence for the presence of the Fe2+ charge state. At 77 K the Mossbauer spectra consist of a magnetically ordered component along with a doublet due to the superparamagnetic behaviour of small crystalline grains with the superparamagnetic component decreasing with grain size reduction. At 4.2 K the sample with 11 nm grain size displays a magnetically blocked state as revealed by the Mossbauer spectrum. The Mossbauer spectrum of this sample recorded at 10 K in an external magnetic field of 6 T applied parallel to the direction of gamma rays clearly shows ferrimagnetic ordering of the sample. Also, the sample exhibits spin canting with a large canting angle, maybe due to a spin-glass-like surface layer or grain boundary anisotropies in the material.
Resumo:
Seismic structural design is essentially the estimation of structural response to a forced motion, which may be deterministic or stochastic, imposed on the ground. The assumption that the same ground motion acts at every point of the base of the structure (or at every support) is not always justifiable; particularly in case of very large structures when considerable spatial variability in ground motion can exist over significant distances example long span bridges. This variability is partly due to the delay in arrival of the excitation at different supports (which is called the wave passage effect) and due to heterogeneity in the ground medium which results in incoherency and local effects. The current study examines the influence of the wave passage effect (in terms of delay in arrival of horizontal ground excitation at different supports and neglecting transmission through the structure) on the response of a few open-plane frame building structures with soil-structure interaction. The ground acceleration has been modeled by a suitably filtered white noise. As a special case, the ground excitation at different supports has also been treated as statistically independent to model the extreme case of incoherence due to local effects and due to modifications to the ground motion resulting from wave reflections and refractions in heterogeneous soil media. The results indicate that, even for relatively short spanned building frames, wave passage effect can be significant. In the absence of soil-structure interaction, it can significantly increase the root mean square (rms) value of the shear in extreme end columns for the stiffer frames but has negligible effect on the flexible frames when total displacements are considered. It is seen that pseudo-static displacements increasingly contribute to the rms value of column shear as the time delay increases both for the stiffer and for the more flexible frames. When soil-structure interaction is considered, wave passage effect (in terms of total displacements) is significant only for low soil shear modulus, G. values (where soil-structure interaction significantly lowers the fundamental frequency) and for stiff frames. The contribution of pseudo-static displacement to these rms values is found to decrease with increase in G. In general, wave passage effect for most interactive frames is insignificant compared to the attenuating effect a decrease in G, has on the response of the interactive structure to uniform support excitation. When the excitations at different supports are statistically independent, it is seen that for both the stiff and flexible frames, the rms value of the column shear in extreme end columns is several times larger (more for the stiffer frames) than the value corresponding to uniform base excitation with the pseudo-static displacements contributing over 99% of the rms value of column shear. Soil-structure interaction has an attenuating effect on the rms value of the column shear, the effect decreasing with increase in G,. Here too, the pseudo-static displacements contribute very largely to the column shear. The influence of the wave passage effect on the response of three 2-bay frames with and without soil-structure interaction to a recorded horizontal accelerogram is also examined. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
ingle tract guanine residues can associate to form stable parallel quadruplex structures in the presence of certain cations. Nanosecond scale molecular dynamics simulations have been performed on fully solvated fibre model of parallel d(G(7)) quadruplex structures with Na+ or K+ ions coordinated in the cavity formed by the O6 atoms of the guanine bases. The AMBER 4.1 force field and Particle Mesh Ewald technique for electrostatic interactions have been used in all simulations. There quadruplex structures are stable during the simulation, with the middle four base tetrads showing root mean square deviation values between 0.5 to 0.8 Angstrom from the initial structure as well the high resolution crystal structure. Even in the absence of any coordinated ion in the initial structure, the G-quadruplex structure remains intact throughout the simulation. During the 1.1 ns MD simulation, one Nai counter ion from the solvent as well as several water molecules enter the central cavity to occupy the empty coordination sites within the parallel quadruplex and help stabilize the structure. Hydrogen bonding pattern depends on the nature of the coordinated ion, with the G-tetrad undergoing local structural variation to accommodate cations of different sizes. in the absence of any coordinated ion. due to strong mutual repulsion, O6 atoms within G-tetrad are forced farther apart from each other, which leads to a considerably different hydrogen bonding scheme within the G-tetrads and very favourable interaction energy between the guanine bases constituting a G-tetrad. However, a coordinated ion between G-tetrads provides extra stacking energy for the G-tetrads and makes the quadruplex structure more rigid. Na+ ions, within the quadruplex cavity, are more mobile than coordinated K+ ions. A number of hydrogen bonded water molecules are observed within the grooves of all quadruplex structures.
Resumo:
Acoustic emission (AE) technique was used to characterise drilling of composite laminates. Uni-directional glass fibre reinforced plastic (GFRP) laminates consisting of 12-layers and 16-layers (0/90)(s) were drilled using a twist drill and the generated AE was monitored. Results of the investigations reveal that the complexion of the acoustic emission root mean square (AE-RMS) signal response changes from the drill entry to the exit thus giving an overall understanding about the different events that take place during drilling. Also, AE-RMS signal level increases with an increase in the applied thrust and further reveals that it is possible to evaluate the drill induced damages in composites through AE signal characterisation. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
The aim of this study was to evaluate and test methods which could improve local estimates of a general model fitted to a large area. In the first three studies, the intention was to divide the study area into sub-areas that were as homogeneous as possible according to the residuals of the general model, and in the fourth study, the localization was based on the local neighbourhood. According to spatial autocorrelation (SA), points closer together in space are more likely to be similar than those that are farther apart. Local indicators of SA (LISAs) test the similarity of data clusters. A LISA was calculated for every observation in the dataset, and together with the spatial position and residual of the global model, the data were segmented using two different methods: classification and regression trees (CART) and the multiresolution segmentation algorithm (MS) of the eCognition software. The general model was then re-fitted (localized) to the formed sub-areas. In kriging, the SA is modelled with a variogram, and the spatial correlation is a function of the distance (and direction) between the observation and the point of calculation. A general trend is corrected with the residual information of the neighbourhood, whose size is controlled by the number of the nearest neighbours. Nearness is measured as Euclidian distance. With all methods, the root mean square errors (RMSEs) were lower, but with the methods that segmented the study area, the deviance in single localized RMSEs was wide. Therefore, an element capable of controlling the division or localization should be included in the segmentation-localization process. Kriging, on the other hand, provided stable estimates when the number of neighbours was sufficient (over 30), thus offering the best potential for further studies. Even CART could be combined with kriging or non-parametric methods, such as most similar neighbours (MSN).
Resumo:
The factors affecting the non-industrial, private forest landowners' (hereafter referred to using the acronym NIPF) strategic decisions in management planning are studied. A genetic algorithm is used to induce a set of rules predicting potential cut of the landowners' choices of preferred timber management strategies. The rules are based on variables describing the characteristics of the landowners and their forest holdings. The predictive ability of a genetic algorithm is compared to linear regression analysis using identical data sets. The data are cross-validated seven times applying both genetic algorithm and regression analyses in order to examine the data-sensitivity and robustness of the generated models. The optimal rule set derived from genetic algorithm analyses included the following variables: mean initial volume, landowner's positive price expectations for the next eight years, landowner being classified as farmer, and preference for the recreational use of forest property. When tested with previously unseen test data, the optimal rule set resulted in a relative root mean square error of 0.40. In the regression analyses, the optimal regression equation consisted of the following variables: mean initial volume, proportion of forestry income, intention to cut extensively in future, and positive price expectations for the next two years. The R2 of the optimal regression equation was 0.34 and the relative root mean square error obtained from the test data was 0.38. In both models, mean initial volume and positive stumpage price expectations were entered as significant predictors of potential cut of preferred timber management strategy. When tested with the complete data set of 201 observations, both the optimal rule set and the optimal regression model achieved the same level of accuracy.
Resumo:
The three-dimensional (3D) NMR solution structure (MeOH) of the highly hydrophobic δ-conotoxin δ-Am2766 from the molluscivorous snail Conus amadis has been determined. Fifteen converged structures were obtained on the basis of 262 distance constraints, 25 torsion-angle constraints, and ten constraints based on disulfide linkages and H-bonds. The root-mean-square deviations (rmsd) about the averaged coordinates of the backbone (N, Cα, C) and (all) heavy atoms were 0.62±0.20 and 1.12±0.23 Å, respectively. The structures determined are of good stereochemical quality, as evidenced by the high percentage (100%) of backbone dihedral angles that occupy favorable and additionally allowed regions of the Ramachandran map. The structure of δ-Am2766 consists of a triple-stranded antiparallel β-sheet, and of four turns. The three disulfides form the classical ‘inhibitory cysteine knot’ motif. So far, only one tertiary structure of a δ-conotoxin has been reported; thus, the tertiary structure of δ-Am2766 is the second such example.Another Conus peptide, Am2735 from C. amadis, has also been purified and sequenced. Am2735 shares 96% sequence identity with δ-Am2766. Unlike δ-Am2766, Am2735 does not inhibit the fast inactivation of Na+ currents in rat brain Nav1.2 Na+ channels at concentrations up to 200 nM.
Resumo:
Often the soil hydraulic parameters are obtained by the inversion of measured data (e.g. soil moisture, pressure head, and cumulative infiltration, etc.). However, the inverse problem in unsaturated zone is ill-posed due to various reasons, and hence the parameters become non-unique. The presence of multiple soil layers brings the additional complexities in the inverse modelling. The generalized likelihood uncertainty estimate (GLUE) is a useful approach to estimate the parameters and their uncertainty when dealing with soil moisture dynamics which is a highly non-linear problem. Because the estimated parameters depend on the modelling scale, inverse modelling carried out on laboratory data and field data may provide independent estimates. The objective of this paper is to compare the parameters and their uncertainty estimated through experiments in the laboratory and in the field and to assess which of the soil hydraulic parameters are independent of the experiment. The first two layers in the field site are characterized by Loamy sand and Loamy. The mean soil moisture and pressure head at three depths are measured with an interval of half hour for a period of 1 week using the evaporation method for the laboratory experiment, whereas soil moisture at three different depths (60, 110, and 200 cm) is measured with an interval of 1 h for 2 years for the field experiment. A one-dimensional soil moisture model on the basis of the finite difference method was used. The calibration and validation are approximately for 1 year each. The model performance was found to be good with root mean square error (RMSE) varying from 2 to 4 cm(3) cm(-3). It is found from the two experiments that mean and uncertainty in the saturated soil moisture (theta(s)) and shape parameter (n) of van Genuchten equations are similar for both the soil types. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Nanosecond scale molecular dynamics simulations have been performed on antiparallel Greek key type d(G(7)) quadruplex structures with different coordinated ions, namely Na+ and K+ ion, water and Na+ counter ions, using the AMBER force field and Particle Mesh Ewald technique for electrostatic interactions. Antiparallel structures are stable during the simulation, with root mean square deviation values of similar to1.5 Angstrom from the initial structures. Hydrogen bonding patterns within the G-tetrads depend on the nature of the coordinated ion, with the G-tetrad undergoing local structural variation to accommodate different cations. However, alternating syn-anti arrangement of bases along a chain as well as in a quartet is maintained through out the MD simulation. Coordinated Na+ ions, within the quadruplex cavity are quite mobile within the central channel and can even enter or exit from the quadruplex core, whereas coordinated K+ ions are quite immobile. MD studies at 400 K indicate that K+ ion cannot come out from the quadruplex core without breaking the terminal G-tetrads. Smaller grooves in antiparallel structures are better binding sites for hydrated counter ions, while a string of hydrogen bonded water molecules are observed within both the small and large grooves. The hydration free energy for the K+ ion coordinated structure is more favourable than that for the Na+ ion coordinated antiparallel quadruplex structure.
Resumo:
Single tract guanine residues can associate to form stable parallel quadruplex structures in the presence of certain cations. Nanosecond scale molecular dynamics simulations have been performed on fully solvated fibre model of parallel d(G7) quadruplex structures with Na+ or K+ ions coordinated in the cavity formed by the 06 atoms of the guanine bases. The AMBER 4.1 force field and Particle Mesh Ewald technique for electrostatic interactions have been used in all simulations. These quadruplex structures are stable during the simulation, with the middle four base tetrads showing root mean square deviation values between 0.5 to 0.8 A from the initial structure as well the high resolution crystal structure. Even in the absence of any coordinated ion in the initial structure, the G-quadruplex structure remains intact throughout the simulation. During the 1.1 ns MD simulation, one Na+ counter ion from the solvent as well as several water molecules enter the central cavity to occupy the empty coordination sites within the parallel quadruplex and help stabilize the structure. Hydrogen bonding pattern depends on the nature of the coordinated ion, with the G-tetrad undergoing local structural variation to accommodate cations of different sizes. In the absence of any coordinated ion, due to strong mutual repulsion, 06 atoms within G-tetrad are forced farther apart from each other, which leads to a considerably different hydrogen bonding scheme within the G-tetrads and very favourable interaction energy between the guanine bases constituting a G-tetrad. However, a coordinated ion between G-tetrads provides extra stacking energy for the G-tetrads and makes the quadruplex structure more rigid. Na+ ions, within the quadruplex cavity, are more mobile than coordinated K+ ions. A number of hydrogen bonded water molecules are observed within the grooves of all quadruplex structures
Resumo:
Molecular dynamics (MD) studies have been carried out on the Hoogsteen hydrogen bonded parallel and the reverse Hoogsteen hydrogen banded antiparallel C.G*G triplexes. Earlier, the molecular mechanics studies had shown that the parallel structure was energetically more favourable than the antiparallel structure. To characterize the structural stability of the two triplexes and to investigate whether the antiparallel structure can transit to an energetically more favourable structure, due to the local fluctuations in the structure during the MD simulation, the two structures were subjected to 200ps of constant temperature vacuum MD simulations at 300K. Initially no constraints were applied to the structures and it was observed that for the antiparallel tripler, the structure showed a large root mean square deviation from the starting structure within the first 12ps and the N4-H41-O6 hydrogen bond in the WC duplex got distorted due to a high propeller twist and a moderate increase in the opening angle in the basepairs. Starting from an initial value of 30 degrees, helical twist of the average structure from this simulation had a value of 36 degrees, while the parallel structure stabilized at a twist of 33 degrees. In spite of the hydrogen bond distortions in the antiparallel tripler, it was energetically comparable to the parallel tripler. To examine the structural characteristics of an undistorted structure, another MD simulation was performed on the antiparallel tripler by constraining all the hydrogen bonds. This structure stabilized at an average twist of 33 degrees. In the course of the dynamics though the energy of the molecule - compared to the initial structure - improved, it did not become comparable to the parallel structure. Energy minimization studies performed in the presence of explicit water and counterions also showed the two structures to be equally favourable energetically Together these results indicate that the parallel C.G*G tripler with Hoogsteen hydrogen bonds also represents a stereochemically and energetically favourable structure for this class of triplexes.
Resumo:
Beta-Lactamase, which catalyzes beta-lactam antibiotics, is prototypical of large alpha/beta proteins with a scaffolding formed by strong noncovalent interactions. Experimentally, the enzyme is well characterized, and intermediates that are slightly less compact and having nearly the same content of secondary structure have been identified in the folding pathway. In the present study, high temperature molecular dynamics simulations have been carried out on the native enzyme in solution. Analysis of these results in terms of root mean square fluctuations in cartesian and [phi, psi] space, backbone dihedral angles and secondary structural hydrogen bonds forms the basis for an investigation of the topology of partially unfolded states of beta-lactamase. A differential stability has been observed for alpha-helices and beta-sheets upon thermal denaturation to putative unfolding intermediates. These observations contribute to an understanding of the folding/unfolding processes of beta-lactamases in particular, and other alpha/beta proteins in general.