136 resultados para ribbons
Resumo:
Guanylate cyclase activating proteins are EF-hand containing proteins that confer calcium sensitivity to retinal guanylate cyclase at the outer segment discs of photoreceptor cells. By making the rate of cGMP synthesis dependent on the free intracellular calcium levels set by illumination, GCAPs play a fundamental role in the recovery of the light response and light adaptation. The main isoforms GCAP1 and GCAP2 also localize to the synaptic terminal, where their function is not known. Based on the reported interaction of GCAP2 with Ribeye, the major component of synaptic ribbons, it was proposed that GCAP2 could mediate the synaptic ribbon dynamic changes that happen in response to light. We here present a thorough ultrastructural analysis of rod synaptic terminals in loss-of-function (GCAP1/GCAP2 double knockout) and gain-of-function (transgenic overexpression) mouse models of GCAP2. Rod synaptic ribbons in GCAPs−/− mice did not differ from wildtype ribbons when mice were raised in constant darkness, indicating that GCAPs are not required for ribbon early assembly or maturation. Transgenic overexpression of GCAP2 in rods led to a shortening of synaptic ribbons, and to a higher than normal percentage of club-shaped and spherical ribbon morphologies. Restoration of GCAP2 expression in the GCAPs−/− background (GCAP2 expression in the absence of endogenous GCAP1) had the striking result of shortening ribbon length to a much higher degree than overexpression of GCAP2 in the wildtype background, as well as reducing the thickness of the outer plexiform layer without affecting the number of rod photoreceptor cells. These results indicate that preservation of the GCAP1 to GCAP2 relative levels is relevant for maintaining the integrity of the synaptic terminal. Our demonstration of GCAP2 immunolocalization at synaptic ribbons at the ultrastructural level would support a role of GCAPs at mediating the effect of light on morphological remodeling changes of synaptic ribbons.
Resumo:
We study the effect of a structural nanoconstriction on the coherent transport properties of otherwise ideal zigzag-edged infinitely long graphene ribbons. The electronic structure is calculated with the standard one-orbital tight-binding model and the linear conductance is obtained using the Landauer formula. We find that, since the zero-bias current is carried in the bulk of the ribbon, this is very robust with respect to a variety of constriction geometries and edge defects. In contrast, the curve of zero-bias conductance versus gate voltage departs from the (2n+1)e2∕h staircase of the ideal case as soon as a single atom is removed from the sample. We also find that wedge-shaped constrictions can present nonconducting states fully localized in the constriction close to the Fermi energy. The interest of these localized states in regards to the formation of quantum dots in graphene is discussed.
Resumo:
The performance of field effect transistors based on an single graphene ribbon with a constriction and a single back gate are studied with the help of atomistic models. It is shown how this scheme, unlike that of traditional carbon-nanotube-based transistors, reduces the importance of the specifics of the chemical bonding to the metallic electrodes in favor of the carbon-based part of device. The ultimate performance limits are here studied for various constriction and metal-ribbon contact models. In particular, we show that, even for poorly contacting metals, properly tailored constrictions can give promising values for both the on conductance and the subthreshold swing.
Resumo:
The electronic structure of isolated finite graphene nanoribbons is investigated by solving, at the Hartree-Fock (HF) level, the Pariser, Parr and Pople (PPP) many-body Hamiltonian. The study is mainly focused on 7-AGNR and 13-AGNR (Armchair Graphene Nano-Ribbons), whose electronic structures have been recently experimentally investigated. Only paramagnetic solutions are considered. The characteristics of the forbidden gap are studied as a function of the ribbon length. For a 7-AGNR, the gap monotonically decreases from a maximum value of ~6.5 eV for short nanoribbons to a very small value of ~0.12 eV for the longer calculated systems. Gap edges are defined by molecular orbitals that are spatially localized near the nanoribbon extremes, that is, near both zig-zag edges. On the other hand, two delocalized orbitals define a much larger gap of about 5 eV. Conductance measurements report a somewhat smaller gap of ~3 eV. The small real gap lies in the middle of the one given by extended states and has been observed by STM and reproduced by DFT calculations. On the other hand, the length dependence of the gap is not monotonous for a 13-AGNR. It decreases initially but sharply increases for lengths beyond 30 Å remaining almost constant thereafter at a value of ~2.1 eV. Two additional states localized at the nanoribbon extremes show up at energies 0.31 eV below the HOMO (Highest Occupied Molecular Orbital) and above the LUMO (Lowest Unoccupied Molecular Orbital). These numbers compare favorably with those recently obtained by means of STS for a 13-AGNR sustained by a gold surface, namely 1.4 eV for the energy gap and 0.4 eV for the position of localized band edges. We show that the important differences between 7- and 13-AGNR should be ascribed to the charge rearrangement near the zig-zag edges obtained in our calculations for ribbons longer than 30 Å, a feature that does not show up for a 7-AGNR no matter its length.
Resumo:
Model Hamiltonians have been, and still are, a valuable tool for investigating the electronic structure of systems for which mean field theories work poorly. This review will concentrate on the application of Pariser–Parr–Pople (PPP) and Hubbard Hamiltonians to investigate some relevant properties of polycyclic aromatic hydrocarbons (PAH) and graphene. When presenting these two Hamiltonians we will resort to second quantisation which, although not the way chosen in its original proposal of the former, is much clearer. We will not attempt to be comprehensive, but rather our objective will be to try to provide the reader with information on what kinds of problems they will encounter and what tools they will need to solve them. One of the key issues concerning model Hamiltonians that will be treated in detail is the choice of model parameters. Although model Hamiltonians reduce the complexity of the original Hamiltonian, they cannot be solved in most cases exactly. So, we shall first consider the Hartree–Fock approximation, still the only tool for handling large systems, besides density functional theory (DFT) approaches. We proceed by discussing to what extent one may exactly solve model Hamiltonians and the Lanczos approach. We shall describe the configuration interaction (CI) method, a common technology in quantum chemistry but one rarely used to solve model Hamiltonians. In particular, we propose a variant of the Lanczos method, inspired by CI, that has the novelty of using as the seed of the Lanczos process a mean field (Hartree–Fock) determinant (the method will be named LCI). Two questions of interest related to model Hamiltonians will be discussed: (i) when including long-range interactions, how crucial is including in the Hamiltonian the electronic charge that compensates ion charges? (ii) Is it possible to reduce a Hamiltonian incorporating Coulomb interactions (PPP) to an 'effective' Hamiltonian including only on-site interactions (Hubbard)? The performance of CI will be checked on small molecules. The electronic structure of azulene and fused azulene will be used to illustrate several aspects of the method. As regards graphene, several questions will be considered: (i) paramagnetic versus antiferromagnetic solutions, (ii) forbidden gap versus dot size, (iii) graphene nano-ribbons, and (iv) optical properties.
Resumo:
Andrew Croswell kept this account book while an undergraduate at Harvard College. It contains entries from 1794, the year he entered, until his graduation in 1798. There is also one entry on the back cover apparently made in 1802. The entries, divided by school term, are very detailed. Croswell indicates the cost of the following, among many other expenses and purchases: transportation, most often to Hingham and Plymouth; payment for "passing the bridge"; candles; hiring a horse; wood and having it cut; laundry; quills and pencils; paper and ink; razors, haircuts, hair ribbons; a trunk; clothing and cloth for trousers; furniture; tickets to the theater; door locks; a bowl and spoon; "batts and balls" and "other necessaries"; tobacco; toothbrushes; shoe and boot repair; fruit; wine, brandy and rum; cheese; coffee and tea; butter; lemons; sugar; and wafers. There are also entries for college-related costs, including the payment of quarter bills, buttery bills, Hasty Pudding Club dues, and a fee to the President of Harvard College related to Croswell's graduation. There are also entries pertaining to the cost of celebrating various special occasions, including Election Day, Christmas Eve, "Independent Day," and George Washington's birthday.
Resumo:
6 19/64 in.x 4 17/32 in.x 2 7/16 in.; cloisonné, gilt copper alloy
Resumo:
We have determined the crystal structure of the core (C) protein from the Kunjin subtype of West Nile virus (WNV), closely related to the NY99 strain of WNV, currently a major health threat in the U.S. WNV is a member of the Flaviviridae family of enveloped RNA viruses that contains many important human pathogens. The C protein is associated with the RNA genome and forms the internal core which is surrounded by the envelope in the virion. The C protein structure contains four a. helices and forms dimers that are organized into tetramers. The tetramers form extended filamentous ribbons resembling the stacked alpha helices seen in HEAT protein structures.
Resumo:
Pseudo-ternary phase diagrams of the polar lipids Quil A, cholesterol (Chol) and phosphatidylcholine (PC) in aqueous mixtures prepared by the lipid film hydration method (where dried lipid film of phospholipids and cholesterol are hydrated by an aqueous solution of Quil A) were investigated in terms of the types of particulate structures formed therein. Negative staining transmission electron microscopy and polarized light microscopy were used to characterize the colloidal and coarse dispersed particles present in the systems. Pseudo-ternary phase diagrams were established for lipid mixtures hydrated in water and in Tris buffer (pH 7.4). The effect of equilibration time was also studied with respect to systems hydrated in water where the samples were stored for 2 months at 4degreesC. Depending on the mass ratio of Quil A, Chol and PC in the systems, various colloidal particles including ISCOM matrices, liposomes, ring-like micelles and worm-like micelles were observed. Other colloidal particles were also observed as minor structures in the presence of these predominant colloids including helices, layered structures and lamellae (hexagonal pattern of ring-like micelles). In terms of the conditions which appeared to promote the formation of ISCOM matrices, the area of the phase diagrams associated with systems containing these structures increased in the order: hydrated in water/short equilibration period < hydrated in buffer/short equilibration period < hydrated in water/prolonged equilibration period. ISCOM matrices appeared to form over time from samples, which initially contained a high concentration of ring-like micelles suggesting that these colloidal structures may be precursors to ISCOM matrix formation. Helices were also frequently found in samples containing ISCOM matrices as a minor colloidal structure. Equilibration time and presence of buffer salts also promoted the formation of liposomes in systems not containing Quil A. These parameters however, did not appear to significantly affect the occurrence and predominance of other structures present in the pseudo-binary systems containing Quil A. Pseudo-ternary phase diagrams of PC, Chol and Quil A are important to identify combinations which will produce different colloidal structures, particularly ISCOM matrices, by the method of lipid film hydration. Colloidal structures comprising these three components are readily prepared by hydration of dried lipid films and may have application in vaccine delivery where the functionality of ISCOMs has clearly been demonstrated. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
High strength, high modulus carbon fibres are becoming increasingly important as high performance engineering materials. This thesis describes how they may be prepared by heat treatment from filaments spun from polyacrylonitrile and its copolymers. The chemistry of the first stages of heat treatment is very important in controlling the mechanical properties of the carbonised product. A cyclisation reaction has been found to be responsible for the relatively high thermal stability of pyrolysed polyacrylonitrile, but without oxidation the fibres degrade and fuse. An initial oxidation stage is, therefore, essential to the preparation of fibre of high orientation. The cyclised product of pyrolysis is probably a poly 1,4 dihydropiridine and oxidation converts this to aromatic structures, and cyclised structures containing carbonyl and other oxygenated groups. Oxidation is found to assist the carbon fibre preparation process, by producing a product which condenses at an earlier stage of heat treatment, before fusion can occur. Carbon fibre strength and modulus are dependent upon producing a highly oriented crystal structure. While oxidation of the polymer stabilises the fibre so as to prevent disorientation, further large increases in orientation, with a commensurate improvement in strength and modulus, can be obtained by stretching at temperatures above 1,700 °C. This process is analogous to the way fibre orientation is increased by the stretching of the precursor. A lamellar graphite structure can be created in high temperature fibre, by carefully controlling the degree of oxidation. This type of graphite can produce very high values of Young's modulus. More often, however, graphite fibre has a fibrillar fine structure, which is explicable in terms of continuous graphite ribbons. A ribbon model is the most satisfactory representation of the structure of carbon fibre, as it explains the mechanism of the development of long range order and the variation of Young's modulus with crystalline preferred orientation.
Resumo:
Sediment dynamics on a storm-dominated shelf (western Bay of Plenty, New Zealand) were mapped and analyzed using the newly developed multi-sensor benthic profiler MARUM NERIDIS III. An area of 60 km × 7 km between 2 and 35 m water depth was surveyed with this bottom-towed sled equipped with a high-resolution camera for continuous close-up seafloor photography and a CTD with connected turbidity sensor. Here we introduce our approach of using this multi-parameter dataset combined with sidescan sonography and sedimentological analyses to create detailed lithofacies and bedform distribution maps and to derive regional sediment transport patterns. For the assessment of sediment distribution, photographs were classified and their spatial distribution mapped out according to associated acoustic backscatter from a sidescan sonar. This provisional map was used to choose target locations for surficial sediment sampling and subsequent laboratory analysis of grain size distribution and mineralogical composition. Finally, photographic, granulometric and mineralogical facies were combined into a unified lithofacies map and corresponding stratigraphic model. Eight distinct types of lithofacies with seawards increasing grain size were discriminated and interpreted as reworked relict deposits overlain by post-transgressional fluvial sediments. The dominant transport processes in different water depths were identified based on type and orientation of bedforms, as well as bottom water turbidity and lithofacies distribution. Observed bedforms include subaquatic dunes, coarse sand ribbons and sorted bedforms of varying dimensions, which were interpreted as being initially formed by erosion. Under fair weather conditions, sediment is transported from the northwest towards the southeast by littoral drift. During storm events, a current from the southeast to the northweast is induced which is transporting sediment along the shore in up to 35 m water depth. Shorewards oriented cross-shore transport is taking place in up to 60 m water depth and is likewise initiated by storm events. Our study demonstrates how benthic photographic profiling delivers comprehensive compositional, structural and environmental information, which compares well with results obtained by traditional probing methods, but offers much higher spatial resolution while covering larger areas. Multi-sensor benthic profiling enhances the interpretability of acoustic seafloor mapping techniques and is a rapid and economic approach to seabed and habitat mapping especially in muddy to sandy facies.
Resumo:
Inscription: Verso: Ribbon-cutting at dedication ceremony of Women's Rights National Historical Park.
Resumo:
FtsZ, a bacterial tubulin homologue, is a cytoskeleton protein that plays key roles in cytokinesis of almost all prokaryotes. FtsZ assembles into protofilaments (pfs), one subunit thick, and these pfs assemble further to form a “Z ring” at the center of prokaryotic cells. The Z ring generates a constriction force on the inner membrane, and also serves as a scaffold to recruit cell-wall remodeling proteins for complete cell division in vivo. FtsZ can be subdivided into 3 main functional regions: globular domain, C terminal (Ct) linker, and Ct peptide. The globular domain binds GTP to assembles the pfs. The extreme Ct peptide binds membrane proteins to allow cytoplasmic FtsZ to function at the inner membrane. The Ct linker connects the globular domain and Ct peptide. In the present studies, we used genetic and structural approaches to investigate the function of Escherichia coli (E. coli) FtsZ. We sought to examine three questions: (1) Are lateral bonds between pfs essential for the Z ring? (2) Can we improve direct visualization of FtsZ in vivo by engineering an FtsZ-FP fusion that can function as the sole source of FtsZ for cell division? (3) Is the divergent Ct linker of FtsZ an intrinsically disordered peptide (IDP)?
One model of the Z ring proposes that pfs associate via lateral bonds to form ribbons; however, lateral bonds are still only hypothetical. To explore potential lateral bonding sites, we probed the surface of E. coli FtsZ by inserting either small peptides or whole FPs. Of the four lateral surfaces on FtsZ pfs, we obtained inserts on the front and back surfaces that were functional for cell division. We concluded that these faces are not sites of essential interactions. Inserts at two sites, G124 and R174 located on the left and right surfaces, completely blocked function, and were identified as possible sites for essential lateral interactions. Another goal was to find a location within FtsZ that supported fusion of FP reporter proteins, while allowing the FtsZ-FP to function as the sole source of FtsZ. We discovered one internal site, G55-Q56, where several different FPs could be inserted without impairing function. These FtsZ-FPs may provide advances for imaging Z-ring structure by super-resolution techniques.
The Ct linker is the most divergent region of FtsZ in both sequence and length. In E. coli FtsZ the Ct linker is 50 amino acids (aa), but for other FtsZ it can be as short as 37 aa or as long as 250 aa. The Ct linker has been hypothesized to be an IDP. In the present study, circular dichroism confirmed that isolated Ct linkers of E. coli (50 aa) and C. crescentus (175 aa) are IDPs. Limited trypsin proteolysis followed by mass spectrometry (LC-MS/MS) confirmed Ct linkers of E. coli (50 aa) and B. subtilis (47 aa) as IDPs even when still attached to the globular domain. In addition, we made chimeras, swapping the E. coli Ct linker for other peptides and proteins. Most chimeras allowed for normal cell division in E. coli, suggesting that IDPs with a length of 43 to 95 aa are tolerated, sequence has little importance, and electrostatic charge is unimportant. Several chimeras were purified to confirm the effect they had on pf assembly. We concluded that the Ct linker functions as a flexible tether allowing for force to be transferred from the FtsZ pf to the membrane to constrict the septum for division.
Resumo:
The effects of ocean acidification (OA) on the early recruitment of pteropods in the Scotia Sea, was investigated considering the process of spawning, quality of the spawned eggs and their capacity to develop. Maternal OA stress was induced on female pteropods (Limacina helicina antarctica) through exposure to present day pCO2 conditions and two potential future OA states (750??atm and 1200??atm). The eggs spawned from these females, both before and during their exposure to OA, were incubated themselves in this same range of conditions (embryonic OA stress). Maternal OA stress resulted in eggs with lower carbon content, while embryonic OA stress retarded development. The combination of maternal and embryonic OA stress reduced the percentage of eggs successfully reaching organogenesis by 80%. We propose that OA stress not only affects the somatic tissue of pteropods but also the functioning of their gonads. Corresponding in-situ sampling found that post-larval L. helicina antarctica concentrated around 600?m depth, which is deeper than previously assumed. A deeper distribution makes their exposure to waters undersaturated for aragonite more likely in the near future given that these waters are predicted to shoal from depth over the coming decades.
Resumo:
Magnetism and magnetic materials have been playing a lead role in the day to day life of human beings. The human kind owes its gratitude to the ‘lodestone’ meaning ‘leading stone’ which lead to the discovery of nations and the onset of modern civilizations. If it was William Gilbert, who first stated that ‘earth was a giant magnet’, then it was the turn of Faraday who correlated electricity and magnetism. Magnetic materials find innumerable applications in the form of inductors, read and write heads, motors, storage devices, magnetic resonance imaging and fusion reactors. Now the industry of magnetic materials has almost surpassed the semiconductor industry and this speaks volumes about its importance. Extensive research is being carried out by scientists and engineers to remove obsolescence and invent new devices. Though magnetism can be categorized based on the response of an applied magnetic field in to diamagnetic, paramagnetic, ferromagnetic, ferrimagnetic and antiferromagnetic; it is ferrimagnetic, ferromagnetic and antiferromagnetic materials which have potential applications. The present thesis focusses on these materials, their composite structures and different ways and means to modify their properties for useful applications. In the past, metals like Fe, Ni and Co were sought after for various applications though iron was in the forefront because of its cost effectiveness and abundance. Later, alloys based on Fe and Ni were increasingly employed. They were used in magnetic heads and in inductors. Ferrites entered the arena and subsequently most of the newer applications were based on ferrites, a ferrimagnetic material, whose composition can be tuned to tailor the magnetic properties. In the late 1950s a new class of magnetic material emerged on the magnetic horizon and they were fondly known as metallic glasses. They are well known for their soft magnetic properties. They were synthesized in the form of melt spun ribbons and are amorphous in nature and they are projected to replace the crystalline counterparts.