875 resultados para respiratory tract infections


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Respiratory Syncytial Virus (RSV) is a major cause of respiratory tract infections in immunocompromised patients such as children less than 2 years, premature infants with congenital heart disease and chronic lung disease, elderly patients and patients who have undergone hematopoietic stem cell transplant (HSCT). HSCT patients are at high risk of RSV infection, at increased risk of developing pneumonia, and RSV-related mortality. Immunodeficiency can be a major risk factor for severe infection & mortality. Therapy of RSV infection with Ribavirin, Palivizumab and Immunoglobulin has shown to reduce the risk of progression to LRI and mortality, especially if initiated early in the disease. Data on RSV infection in HSCT patients is limited, especially at various levels of immunodeficiency. 323 RSV infections in HSCT patients have been identified between 1/1995 and 8/2009 at University of Texas M D Anderson Cancer Center (UTMDACC). In this proposed study, we attempted to analyze a de-identified database of these cases and describe the epidemiologic characteristics of RSV infection in HSCT patients, the course of the infection, rate of development of pneumonia and RSV-related mortality in HSCT patients at UTMDACC.^ Key words: RSV infections, HSCT patients ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Urinary tract infections, caused mainly by Escherichia coli, are among the most common infectious diseases. Most isolates of the uropathogenic E.coli can express type 1 and P fimbriae containing adhesins that recognize cell receptors. While P fimbriae recognize kidney glycolipid receptors and are involved in peyelonephritis, the urothelial for type 1 fimbriae were not identified. We show that type 1-fimbriated E. coli recognize uroplakins Ia and Ib, two major glycoproteins of urothelial apical plaques. Anchorage of E. coli to urothelial surface via type 1 fimbriae-uroplakin I interactions may play a role in its bladder colonization and eventual ascent through the ureters, against urine flow, to invade the kidneys.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To evaluate the efficacy of supplementation with zinc and vitamin A in Indigenous children hospitalised with acute lower respiratory infection (ALRI). Design: Randomised controlled, 2-by-2 factorial trial of supplementation with zinc and vitamin A. Setting and participants: 187 Indigenous children aged < 11 years hospitalised with 215 ALRI episodes at Alice Springs Hospital (April 2001 to July 2002). Interventions: Vitamin A was administered on Days 1 and 5 of admission at a dose of 50 000 IU (infants under 12 months), or 100 000 IU; and zinc sulfate was administered daily for 5 days at a daily dose of 20 mg (infants under 12 months) or 40 mg. Main outcome measure: Time to clinical recovery from fever and tachypnoea, duration of hospitalisation, and readmission for ALRI within 120 days. Results: There was no clinical benefit of supplementation with vitamin A, zinc or the two combined, with no significant difference between zinc and no-zinc, vitamin A and no-vitamin A or zinc + vitamin A and placebo groups in time to resolution of fever or tachypnoea, or duration of hospitalisation. Instead, we found increased morbidity; children given zinc had increased risk of readmission for ALRI within 120 days (relative risk, 2.4; 95% CI, 1.003–6.1). Conclusion: This study does not support the use of vitamin A or zinc supplementation in the management of ALRI requiring hospitalisation in Indigenous children living in remote areas. Even in populations with high rates of ALRI and poor living conditions, vitamin A and zinc therapy may not be useful. The effect of supplementation may depend on the prevalence of deficiency of these micronutrients in the population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chlamydia pneumoniae is a common human and animal pathogen associated with a wide range of upper and lower respiratory tract infections. In more recent years there has been increasing evidence to suggest a link between C. pneumoniae and chronic diseases in humans, including atherosclerosis, stroke and Alzheimer’s disease. C. pneumoniae human strains show little genetic variation, indicating that the human-derived strain originated from a common ancestor in the recent past. Despite extensive information on the genetics and morphology processes of the human strain, knowledge concerning many other hosts (including marsupials, amphibians, reptiles and equines) remains virtually unexplored. The koala (Phascolarctos cinereus) is a native Australian marsupial under threat due to habitat loss, predation and disease. Koalas are very susceptible to chlamydial infections, most commonly affecting the conjunctiva, urogenital tract and/or respiratory tract. To address this gap in the literature, the present study (i) provides a detailed description of the morphologic and genomic architecture of the C. pneumoniae koala (and human) strain, and shows that the koala strain is microscopically, developmentally and genetically distinct from the C. pneumoniae human strain, and (ii) examines the genetic relationship of geographically diverse C. pneumoniae isolates from human, marsupial, amphibian, reptilian and equine hosts, and identifies two distinct lineages that have arisen from animal-to-human cross species transmissions. Chapter One of this thesis explores the scientific problem and aims of this study, while Chapter Two provides a detailed literature review of the background in this field of work. Chapter Three, the first results chapter, describes the morphology and developmental stages of C. pneumoniae koala isolate LPCoLN, as revealed by fluorescence and transmission electron microscopy. The profile of this isolate, when cultured in HEp-2 human epithelial cells, was quite different to the human AR39 isolate. Koala LPCoLN inclusions were larger; the elementary bodies did not have the characteristic pear-shaped appearance, and the developmental cycle was completed within a shorter period of time (as confirmed by quantitative real-time PCR). These in vitro findings might reflect biological differences between koala LPCoLN and human AR39 in vivo. Chapter Four describes the complete genome sequence of the koala respiratory pathogen, C. pneumoniae LPCoLN. This is the first animal isolate of C. pneumoniae to be fully-sequenced. The genome sequence provides new insights into genomic ‘plasticity’ (organisation), evolution and biology of koala LPCoLN, relative to four complete C. pneumoniae human genomes (AR39, CWL029, J138 and TW183). Koala LPCoLN contains a plasmid that is not shared with any of the human isolates, there is evidence of gene loss in nucleotide salvage pathways, and there are 10 hot spot genomic regions of variation that were previously not identified in the C. pneumoniae human genomes. Sequence (partial-length) from a second, independent, wild koala isolate (EBB) at several gene loci confirmed that the koala LPCoLN isolate was representative of a koala C. pneumoniae strain. The combined sequence data provides evidence that the C. pneumoniae animal (koala LPCoLN) genome is ancestral to the C. pneumoniae human genomes and that human infections may have originated from zoonotic infections. Chapter Five examines key genome components of the five C. pneumoniae genomes in more detail. This analysis reveals genomic features that are shared by and/or contribute to the broad ecological adaptability and evolution of C. pneumoniae. This analysis resulted in the identification of 65 gene sequences for further analysis of intraspecific variation, and revealed some interesting differences, including fragmentation, truncation and gene decay (loss of redundant ancestral traits). This study provides valuable insights into metabolic diversity, adaptation and evolution of C. pneumoniae. Chapter Six utilises a subset of 23 target genes identified from the previous genomic comparisons and makes a significant contribution to our understanding of genetic variability among C. pneumoniae human (11) and animal (6 amphibian, 5 reptilian, 1 equine and 7 marsupial hosts) isolates. It has been shown that the animal isolates are genetically diverse, unlike the human isolates that are virtually clonal. More convincing evidence that C. pneumoniae originated in animals and recently (in the last few hundred thousand years) crossed host species to infect humans is provided in this study. It is proposed that two animal-to-human cross species events have occurred in the context of the results, one evident by the nearly clonal human genotype circulating in the world today, and the other by a more animal-like genotype apparent in Indigenous Australians. Taken together, these data indicate that the C. pneumoniae koala LPCoLN isolate has morphologic and genomic characteristics that are distinct from the human isolates. These differences may affect the survival and activity of the C. pneumoniae koala pathogen in its natural host, in vivo. This study, by utilising the genetic diversity of C. pneumoniae, identified new genetic markers for distinguishing human and animal isolates. However, not all C. pneumoniae isolates were genetically diverse; in fact, several isolates were highly conserved, if not identical in sequence (i.e. Australian marsupials) emphasising that at some stage in the evolution of this pathogen, there has been an adaptation/s to a particular host, providing some stability in the genome. The outcomes of this study by experimental and bioinformatic approaches have significantly enhanced our knowledge of the biology of this pathogen and will advance opportunities for the investigation of novel vaccine targets, antimicrobial therapy, or blocking of pathogenic pathways.