819 resultados para resource scaling
Resumo:
OBJETIVO: Estimar a confiabilidade teste-reteste dos itens do Resource Generator scale para avaliação de capital social no Estudo Longitudinal de Saúde do Adulto (ELSA-Brasil).MÉTODOS: A escala de capital social foi aplicada em subamostra de 281 participantes dos seis Centros de Investigação do ELSA, em duas oportunidades, com intervalo de sete a 14 dias. O instrumento é constituído por 31 itens que representam situações concretas para avaliar o acesso a diferentes tipos de recursos, além de avaliar a fonte dos recursos disponíveis (familiares, amigos ou conhecidos). A análise estatística foi realizada por meio de estatísticas kappa (k) e kappa ajustado pela prevalência (ka).RESULTADOS: Os recursos sociais investigados foram encontrados com grande frequência (acima de 50%). Em relação à presença ou ausência dos recursos, as estimativas de confiabilidade ajustadas pela prevalência (ka) variaram de 0,54 a 0,97. No que se refere à fonte de recurso, essas estimativas variaram de ka = 0,45 (alguém que tenha bons contatos com a mídia) a ka = 0,86 (alguém que se formou no Ensino Médio).CONCLUSÕES: A escala apresentou níveis adequados de confiabilidade, que variaram de acordo com o tipo de recurso.
Resumo:
Compositional schedulability analysis of hierarchical realtime systems is a well-studied problem. Various techniques have been developed to abstract resource requirements of components in such systems, and schedulability has been addressed using these abstract representations (also called component interfaces). These approaches for compositional analysis incur resource overheads when they abstract components into interfaces. In this talk, we define notions of resource schedulability and optimality for component interfaces, and compare various approaches.
Resumo:
Wind resource evaluation in two sites located in Portugal was performed using the mesoscale modelling system Weather Research and Forecasting (WRF) and the wind resource analysis tool commonly used within the wind power industry, the Wind Atlas Analysis and Application Program (WAsP) microscale model. Wind measurement campaigns were conducted in the selected sites, allowing for a comparison between in situ measurements and simulated wind, in terms of flow characteristics and energy yields estimates. Three different methodologies were tested, aiming to provide an overview of the benefits and limitations of these methodologies for wind resource estimation. In the first methodology the mesoscale model acts like “virtual” wind measuring stations, where wind data was computed by WRF for both sites and inserted directly as input in WAsP. In the second approach, the same procedure was followed but here the terrain influences induced by the mesoscale model low resolution terrain data were removed from the simulated wind data. In the third methodology, the simulated wind data is extracted at the top of the planetary boundary layer height for both sites, aiming to assess if the use of geostrophic winds (which, by definition, are not influenced by the local terrain) can bring any improvement in the models performance. The obtained results for the abovementioned methodologies were compared with those resulting from in situ measurements, in terms of mean wind speed, Weibull probability density function parameters and production estimates, considering the installation of one wind turbine in each site. Results showed that the second tested approach is the one that produces values closest to the measured ones, and fairly acceptable deviations were found using this coupling technique in terms of estimated annual production. However, mesoscale output should not be used directly in wind farm sitting projects, mainly due to the mesoscale model terrain data poor resolution. Instead, the use of mesoscale output in microscale models should be seen as a valid alternative to in situ data mainly for preliminary wind resource assessments, although the application of mesoscale and microscale coupling in areas with complex topography should be done with extreme caution.
Resumo:
This paper addresses the use of multidimensional scaling in the evaluation of controller performance. Several nonlinear systems are analyzed based on the closed loop time response under the action of a reference step input signal. Three alternative performance indices, based on the time response, Fourier analysis, and mutual information, are tested. The numerical experiments demonstrate the feasibility of the proposed methodology and motivate its extension for other performance measures and new classes of nonlinearities.
Resumo:
We propose a graphical method to visualize possible time-varying correlations between fifteen stock market values. The method is useful for observing stable or emerging clusters of stock markets with similar behaviour. The graphs, originated from applying multidimensional scaling techniques (MDS), may also guide the construction of multivariate econometric models.
Resumo:
This paper presents the application of multidimensional scaling (MDS) analysis to data emerging from noninvasive lung function tests, namely the input respiratory impedance. The aim is to obtain a geometrical mapping of the diseases in a 3D space representation, allowing analysis of (dis)similarities between subjects within the same pathology groups, as well as between the various groups. The adult patient groups investigated were healthy, diagnosed chronic obstructive pulmonary disease (COPD) and diagnosed kyphoscoliosis, respectively. The children patient groups were healthy, asthma and cystic fibrosis. The results suggest that MDS can be successfully employed for mapping purposes of restrictive (kyphoscoliosis) and obstructive (COPD) pathologies. Hence, MDS tools can be further examined to define clear limits between pools of patients for clinical classification, and used as a training aid for medical traineeship.
Resumo:
Cloud SLAs compensate customers with credits when average availability drops below certain levels. This is too inflexible because consumers lose non-measurable amounts of performance being only compensated later, in next charging cycles. We propose to schedule virtual machines (VMs), driven by range-based non-linear reductions of utility, different for classes of users and across different ranges of resource allocations: partial utility. This customer-defined metric, allows providers transferring resources between VMs in meaningful and economically efficient ways. We define a comprehensive cost model incorporating partial utility given by clients to a certain level of degradation, when VMs are allocated in overcommitted environments (Public, Private, Community Clouds). CloudSim was extended to support our scheduling model. Several simulation scenarios with synthetic and real workloads are presented, using datacenters with different dimensions regarding the number of servers and computational capacity. We show the partial utility-driven driven scheduling allows more VMs to be allocated. It brings benefits to providers, regarding revenue and resource utilization, allowing for more revenue per resource allocated and scaling well with the size of datacenters when comparing with an utility-oblivious redistribution of resources. Regarding clients, their workloads’ execution time is also improved, by incorporating an SLA-based redistribution of their VM’s computational power.
Resumo:
The goal of this study is the analysis of the dynamical properties of financial data series from worldwide stock market indexes during the period 2000–2009. We analyze, under a regional criterium, ten main indexes at a daily time horizon. The methods and algorithms that have been explored for the description of dynamical phenomena become an effective background in the analysis of economical data. We start by applying the classical concepts of signal analysis, fractional Fourier transform, and methods of fractional calculus. In a second phase we adopt the multidimensional scaling approach. Stock market indexes are examples of complex interacting systems for which a huge amount of data exists. Therefore, these indexes, viewed from a different perspectives, lead to new classification patterns.
Resumo:
This paper applied MDS and Fourier transform to analyze different periods of the business cycle. With such purpose, four important stock market indexes (Dow Jones, Nasdaq, NYSE, S&P500) were studied over time. The analysis under the lens of the Fourier transform showed that the indexes have characteristics similar to those of fractional noise. By the other side, the analysis under the MDS lens identified patterns in the stock markets specific to each economic expansion period. Although the identification of patterns characteristic to each expansion period is interesting to practitioners (even if only in a posteriori fashion), further research should explore the meaning of such regularities and target to find a method to estimate future crisis.
Resumo:
A construction project is a group of discernible tasks or activities that are conduct-ed in a coordinated effort to accomplish one or more objectives. Construction projects re-quire varying levels of cost, time and other resources. To plan and schedule a construction project, activities must be defined sufficiently. The level of detail determines the number of activities contained within the project plan and schedule. So, finding feasible schedules which efficiently use scarce resources is a challenging task within project management. In this context, the well-known Resource Constrained Project Scheduling Problem (RCPSP) has been studied during the last decades. In the RCPSP the activities of a project have to be scheduled such that the makespan of the project is minimized. So, the technological precedence constraints have to be observed as well as limitations of the renewable resources required to accomplish the activities. Once started, an activity may not be interrupted. This problem has been extended to a more realistic model, the multi-mode resource con-strained project scheduling problem (MRCPSP), where each activity can be performed in one out of several modes. Each mode of an activity represents an alternative way of combining different levels of resource requirements with a related duration. Each renewable resource has a limited availability for the entire project such as manpower and machines. This paper presents a hybrid genetic algorithm for the multi-mode resource-constrained pro-ject scheduling problem, in which multiple execution modes are available for each of the ac-tivities of the project. The objective function is the minimization of the construction project completion time. To solve the problem, is applied a two-level genetic algorithm, which makes use of two separate levels and extend the parameterized schedule generation scheme. It is evaluated the quality of the schedules and presents detailed comparative computational re-sults for the MRCPSP, which reveal that this approach is a competitive algorithm.
Resumo:
The aim of this work is to characterize the nanofilm consisting of the benzoic acid-modified glassy carbon (GC) electrode system through multidimensional scaling space analysis. The surface modification is based on the electrochemical reaction between the GC electrode and benzoic acid-diazonium salt (BA-DAS). As a result, the nonofilms regarding the benzoic acid-glassy carbon (BA-GC) electrode surface was obtained. For the analysis of the naonfilm of BC-GC electrode system, the IR spectra of the modified BA-GC electrode surface, GC surface and BA-DAS were recorded in the spectral range of 599.84 – 3996.34 [cm–1]. The IR data vectors of the above three forms were processed by the using the multidimensional scaling space approach to demonstrate the existence of a nanofilm on the modified BA-GC electrode system. Two- and three-dimensional MDS profiles obtained by application of multidimensional scaling approach to the data sets {CG1,...,CG10}, {BA-GC1,...,BA-GC10} and {FILM1,...,FILM10} allow a good recognition of the nanofilm on the modified glassy carbon (GC) electrode system.
Resumo:
This paper presents a genetic algorithm for the resource constrained multi-project scheduling problem. The chromosome representation of the problem is based on random keys. The schedules are constructed using a heuristic that builds parameterized active schedules based on priorities, delay times, and release dates defined by the genetic algorithm. The approach is tested on a set of randomly generated problems. The computational results validate the effectiveness of the proposed algorithm.
Resumo:
This chapter analyzes the signals captured during impacts and vibrations of a mechanical manipulator. Eighteen signals are captured and several metrics are calculated between them, such as the correlation, the mutual information and the entropy. A sensor classification scheme based on the multidimensional scaling technique is presented.
Resumo:
This paper studies the impact of energy and stock markets upon electricity markets using Multidimensional Scaling (MDS). Historical values from major energy, stock and electricity markets are adopted. To analyze the data several graphs produced by MDS are presented and discussed. This method is useful to have a deeper insight into the behavior and the correlation of the markets. The results may also guide the construction models, helping electricity markets agents hedging against Market Clearing Price (MCP) volatility and, simultaneously, to achieve better financial results.
Resumo:
This paper analyzes the signals captured during impacts and vibrations of a mechanical manipulator. To test the impacts, a flexible beam is clamped to the end-effector of a manipulator that is programmed in a way such that the rod moves against a rigid surface. Eighteen signals are captured and theirs correlation are calculated. A sensor classification scheme based on the multidimensional scaling technique is presented.