943 resultados para resistance to imipenem
Résistance aux diurétiques de l'anse en clinique [Resistance to loop diuretics in clinical practice]
Resumo:
Loop diuretics belong to the most common medications used in ambulatory and hospitalized patients, especially in situation of hypervolemia and chronic renal failure. Prolonged used of these agents in particular medical conditions can lead to attenuation of their diuretic effect, commonly known as "resistance" to diuretics. This article intends to review the main mechanisms of resistance to loop diuretic and the ways to counteract them in clinical practice.
Resumo:
Resistance of human immunodeficiency virus type 1 (HIV-1) to antiretroviral agents results from target gene mutation within the pol gene, which encodes the viral protease, reverse transcriptase (RT), and integrase. We speculated that mutations in genes other that the drug target could lead to drug resistance. For this purpose, the p1-p6(gag)-p6(pol) region of HIV-1, placed immediately upstream of pol, was analyzed. This region has the potential to alter Pol through frameshift regulation (p1), through improved packaging of viral enzymes (p6(Gag)), or by changes in activation of the viral protease (p6(Pol)). Duplication of the proline-rich p6(Gag) PTAP motif, necessary for late viral cycle activities, was identified in plasma virus from 47 of 222 (21.2%) patients treated with nucleoside analog RT inhibitor (NRTI) antiretroviral therapy but was identified very rarely from drug-naïve individuals. Molecular clones carrying a 3-amino-acid duplication, APPAPP (transframe duplication SPTSPT in p6(Pol)), displayed a delay in protein maturation; however, they packaged a 34% excess of RT and exhibited a marked competitive growth advantage in the presence of NRTIs. This phenotype is reminiscent of the inoculum effect described in bacteriology, where a larger input, or a greater infectivity of an organism with a wild-type antimicrobial target, leads to escape from drug pressure and a higher MIC in vitro. Though the mechanism by which the PTAP region participates in viral maturation is not known, duplication of this proline-rich motif could improve assembly and packaging at membrane locations, resulting in the observed phenotype of increased infectivity and drug resistance.
Resumo:
OBJECTIVES: The purpose of this study was the qualitative and quantitative assessment of the in vitro effect of HIV-1 protease (PR) mutation 82M on replication capacity and susceptibility to the eight clinically available PR inhibitors (PIs).¦METHODS: The 82M substitution was introduced by site-directed mutagenesis in wild-type subtype B and G strains, as well as reverted back to wild-type in a therapy-failing strain. The recombinant viruses were evaluated for their replication capacity and susceptibility to PIs.¦RESULTS: The single 82M mutation within a wild-type subtype B or G background did not result in drug resistance. However, the in vitro effect of single PR mutations on PI susceptibility is not always distinguishable from wild-type virus, and particular background mutations and polymorphisms are required to detect significant differences in the drug susceptibility profile. Consequently, reverting the 82M mutation back to wild-type (82I) in a subtype G isolate from a patient that failed therapy with multiple other PR mutations did result in significant increases in susceptibility towards indinavir and lopinavir and minor increases in susceptibility towards amprenavir and atazanavir. The presence of the 82M mutation also slightly decreased viral replication, whether it was in the genetic background of subtype B or subtype G.¦CONCLUSIONS: Our results suggest that 82M has an impact on PI susceptibility and that this effect is not due to a compensatory effect on the replication capacity. Because 82M is not observed as a polymorphism in any subtype, these observations support the inclusion of 82M in drug resistance interpretation systems and PI mutation lists.
Resumo:
Granzyme (gzm) A and B, proteases of NK cells and T killer cells, mediate cell death, but also cleave extracellular matrices, inactivate intracellular pathogens, and induce cytokines. Moreover, macrophages, Th2 cells, regulatory T cells, mast cells, and B cells can express gzms. We recently reported gzm induction in human filarial infection. In this study, we show that in rodent filarial infection with Litomosoides sigmodontis, worm loads were significantly reduced in gzmA×B and gzmB knockout mice during the whole course of infection, but enhanced only early in gzmA knockout compared with wild-type mice. GzmA/B deficiency was associated with a defense-promoting Th2 cytokine and Ab shift, enhanced early inflammatory gene expression, and a trend of reduced alternatively activated macrophage induction, whereas gzmA deficiency was linked with reduced inflammation and a trend toward increased alternatively activated macrophages. This suggests a novel and divergent role for gzms in helminth infection, with gzmA contributing to resistance and gzmB promoting susceptibility.
Resumo:
The spatial configuration of metapopulations (numbers, sizes, and localization of patches) affects their ability to resist demographic extinction and genetic drift, but sometimes with opposite effects. Small and isolated patches, for instance, contribute marginally to demography but may play a large role in genetics by maintaining a sizeable amount of genetic variance among demes. In source-sink systems, similarly, connectivity may be beneficial in terms of effective size, but detrimental in terms of survival, by lowering the reproductive value of source populations. How to reconcile these opposite effects? Here we propose an analytical framework that integrates fixation time (ability to resist genetic drift) and extinction time (ability to resist demographic extinction) into a single index of resistance, measuring the ability of a metapopulation to maintain its demo-genetic integrity. We then illustrate with numerical examples how conflicting demands may be resolved.
Resumo:
The plant cuticle composed of cutin, a lipid-derived polyester, and cuticular waxes covers the aerial portions of plants and constitutes a hydrophobic extracellular matrix layer that protects plants against environmental stresses. The botrytis-resistant 1 (bre1) mutant of Arabidopsis reveals that a permeable cuticle does not facilitate the entry of fungal pathogens in general, but surprisingly causes an arrest of invasion by Botrytis. BRE1 was identified to be long-chain acyl-CoA synthetase2 (LACS2) that has previously been shown to be involved in cuticle development and was here found to be essential for cutin biosynthesis. bre1/lacs2 has a five-fold reduction in dicarboxylic acids, the typical monomers of Arabidopsis cutin. Comparison of bre1/lacs2 with the mutants lacerata and hothead revealed that an increased permeability of the cuticle facilitates perception of putative elicitors in potato dextrose broth, leading to the presence of antifungal compound(s) at the surface of Arabidopsis plants that confer resistance to Botrytis and Sclerotinia. Arabidopsis plants with a permeable cuticle have thus an altered perception of their environment and change their physiology accordingly.
Resumo:
Therapeutic strategies for essential tremor (ET) and Parkinson's disease (PD) can be divided into two successive steps, one based on oral medications and the other, more invasive, using pumps or functional neurosurgery. When ET becomes refractory to propranolol, primidone and other, second-choice compounds, deep brain stimulation of the VIM nucleus of the thalamus can be considered. When PD becomes resistant to dopamine replacement therapy using various combinations of dopaminergic agents, then three options can be discussed: first, a subcutaneous apomorphine mini-pump, second, a jejunal levodopa-delivery system by means of percutaneous gastrostomy, and third, bilateral deep brain stimulation of the subthalamic nucleus. The above interventions are successful in about 80% of cases.
Resumo:
Individual-specific uncertainty may increase the chances of reform beingenacted and sustained. Reform may be more likely to be enacted because amajority of agents might end up losing little from reform and a minoritygaining a lot. Under certainty, reform would therefore be rejected, butit may be enacted with uncertainty because those who end up losing believethat they might be among the winners. Reform may be more likely to besustained because, in a realistic setting, reform will increase theincentives of agents to move into those economic activities that benefit.Agents who respond to these incentives will vote to sustain reform infuture elections, even if they would have rejected reform under certainty.These points are made using the trade-model of Fernandez and Rodrik (AER,1991).
Resumo:
The monocarboxylate transporter 1 (MCT1 or SLC16A1) is a carrier of short-chain fatty acids, ketone bodies, and lactate in several tissues. Genetically modified C57BL/6J mice were produced by targeted disruption of the mct1 gene in order to understand the role of this transporter in energy homeostasis. Null mutation was embryonically lethal, but MCT1 (+/-) mice developed normally. However, when fed high fat diet (HFD), MCT1 (+/-) mice displayed resistance to development of diet-induced obesity (24.8% lower body weight after 16 weeks of HFD), as well as less insulin resistance and no hepatic steatosis as compared to littermate MCT1 (+/+) mice used as controls. Body composition analysis revealed that reduced weight gain in MCT1 (+/-) mice was due to decreased fat accumulation (50.0% less after 9 months of HFD) notably in liver and white adipose tissue. This phenotype was associated with reduced food intake under HFD (12.3% less over 10 weeks) and decreased intestinal energy absorption (9.6% higher stool energy content). Indirect calorimetry measurements showed ∼ 15% increase in O2 consumption and CO2 production during the resting phase, without any changes in physical activity. Determination of plasma concentrations for various metabolites and hormones did not reveal significant changes in lactate and ketone bodies levels between the two genotypes, but both insulin and leptin levels, which were elevated in MCT1 (+/+) mice when fed HFD, were reduced in MCT1 (+/-) mice under HFD. Interestingly, the enhancement in expression of several genes involved in lipid metabolism in the liver of MCT1 (+/+) mice under high fat diet was prevented in the liver of MCT1 (+/-) mice under the same diet, thus likely contributing to the observed phenotype. These findings uncover the critical role of MCT1 in the regulation of energy balance when animals are exposed to an obesogenic diet.
Resumo:
Selection pressure to obtain resistant genotypes can result in fitness cost. In this study, we report the effects of the selection pressure of a commercial formulation of Bacillus thuringiensis on biological aspects of a Dipel-resistant strain of velvetbean caterpillar, Anticarsia gemmatalis Hübner. Comparisons of Dipel-resistant and susceptible individuals revealed significant differences in pupal weight and larval development time. Both strains (Dipel-resistant and susceptible) were susceptible to Cry1Ac toxin expressed in foliar cotton tissues. Resistant and susceptible strains showed low survival rates of 22.5% and 51.2%, respectively, when fed with Greene diet containing Bt-cotton. Larvae bioassayed after three laboratory generations presented lower survival and less instar numbers than individuals maintained in the laboratory for more than 144 generations. Pupal weight was 9.4% lower and larval development time was 1.9 days longer in the resistant population than in the susceptible strain. Other parameters, such as duration of pupal stage, adult longevity, number of eggs per female, oviposition period, and egg fertility, remained unaffected.
Resumo:
Lymphocyte homeostasis is regulated by mechanisms that control lymphocyte proliferation and apoptosis. Activation-induced cell death is mediated by the expression of death ligands and receptors, which, when triggered, activate an apoptotic cascade. Bovine T cells transformed by the intracellular parasite Theileria parva proliferate in an uncontrolled manner and undergo clonal expansion. They constitutively express the death receptor Fas and its ligand, FasL but do not undergo apoptosis. Upon elimination of the parasite from the host cell by treatment with a theilericidal drug, cells become increasingly sensitive to Fas/FasL-induced apoptosis. In normal T cells, the sensitivity to death receptor killing is regulated by specific inhibitor proteins. We found that anti-apoptotic proteins such as cellular (c)-FLIP, which functions as a catalytically inactive form of caspase-8, and X-chromosome-linked inhibitor of apoptosis protein (IAP) as well as c-IAP, which can block downstream executioner caspases, are constitutively expressed in T. parva-transformed T cells. Expression of these proteins is rapidly down-regulated upon parasite elimination. Antiapoptotic proteins of the Bcl-2 family such as Bcl-2 and Bcl-x(L) are also expressed but, in contrast to c-FLIP, c-IAP, and X-chromosome-linked IAP, do not appear to be tightly regulated by the presence of the parasite. Finally, we show that, in contrast to the situation in tumor cells, the phosphoinositide 3-kinase/Akt pathway is not essential for c-FLIP expression. Our findings indicate that by inducing the expression of antiapoptotic proteins, T. parva allows the host cell to escape destruction by homeostatic mechanisms that would normally be activated to limit the continuous expansion of a T cell population.
Resumo:
Plaque formation in vaccinia virus is inhibited by the compound N1-isonicotinoyl-N2-3-methyl-4-chlorobenzoylhydrazine (IMCBH). We have isolated a mutant virus that forms wild-type plaques in the presence of the drug. Comparison of wild-type and mutant virus showed that both viruses produced similar amounts of infectious intracellular naked virus in the presence of the drug. In contrast to the mutant, no extracellular enveloped virus was obtained from IMCBH-treated cells infected with wild-type virus. Marker rescue experiments were used to map the mutation conferring IMCBH resistance to the mutant virus. The map position coincided with that of the gene encoding the viral envelope antigen of M(r) 37,000. Sequence analysis of both wild-type and mutant genes showed a single nucleotide change (G to T) in the mutant gene. In the deduced amino acid sequence, the mutation changes the codon for an acidic Asp residue in the wild-type gene to one for a polar noncharged Tyr residue in the mutant.