919 resultados para redox mediators
Resumo:
The appearance of multicellular organisms imposed the development of several mechanisms for cell-to-cell communication, whereby different types of cells coordinate their function. Some of these mechanisms depend on the intercellular diffusion of signal molecules in the extracellular spaces, whereas others require cell-to-cell contact. Among the latter mechanisms, those provided by the proteins of the connexin family are widespread in most tissues. Connexin signaling is achieved via direct exchanges of cytosolic molecules between adjacent cells at gap junctions, for cell-to-cell coupling, and possibly also involves the formation of membrane "hemi-channels," for the extracellular release of cytosolic signals, direct interactions between connexins and other cell proteins, and coordinated influence on the expression of multiple genes. Connexin signaling appears to be an obligatory attribute of all multicellular exocrine and endocrine glands. Specifically, the experimental evidence we review here points to a direct participation of the Cx36 isoform in the function of the insulin-producing β-cells of the endocrine pancreas, and of the Cx40 isoform in the function of the renin-producing juxtaglomerular epithelioid cells of the kidney cortex.
Resumo:
Converging evidence favors an abnormal susceptibility to oxidative stress in schizophrenia. Decreased levels of glutathione (GSH), the major cellular antioxidant and redox regulator, was observed in cerebrospinal-fluid and prefrontal cortex of patients. Importantly, abnormal GSH synthesis of genetic origin was observed: Two case-control studies showed an association with a GAG trinucleotide repeat (TNR) polymorphism in the GSH key synthesizing enzyme glutamate-cysteine-ligase (GCL) catalytic subunit (GCLC) gene. The most common TNR genotype 7/7 was more frequent in controls, whereas the rarest TNR genotype 8/8 was three times more frequent in patients. The disease associated genotypes (35% of patients) correlated with decreased GCLC protein, GCL activity and GSH content. Similar GSH system anomalies were observed in early psychosis patients. Such redox dysregulation combined with environmental stressors at specific developmental stages could underlie structural and functional connectivity anomalies. In pharmacological and knock-out (KO) models, GSH deficit induces anomalies analogous to those reported in patients. (a) morphology: spine density and GABA-parvalbumine immunoreactivity (PV-I) were decreased in anterior cingulate cortex. KO mice showed delayed cortical PV-I at PD10. This effect is exacerbated in mice with increased DA from PD5-10. KO mice exhibit cortical impairment in myelin and perineuronal net known to modulate PV connectivity. (b) physiology: In cultured neurons, NMDA response are depressed by D2 activation. In hippocampus, NMDA-dependent synaptic plasticity is impaired and kainate induced g-oscillations are reduced in parallel to PV-I. (c) cognition: low GSH models show increased sensitivity to stress, hyperactivity, abnormal object recognition, olfactory integration and social behavior. In a clinical study, GSH precursor N-acetyl cysteine (NAC) as add on therapy, improves the negative symptoms and decreases the side effects of antipsychotics. In an auditory oddball paradigm, NAC improves the mismatched negativity, an evoked potential related to pre-attention and to NMDA receptors function. In summary, clinical and experimental evidence converge to demonstrate that a genetically induced dysregulation of GSH synthesis combined with environmental insults in early development represent a major risk factor contributing to the development of schizophrenia
Resumo:
This study examined the role of posttraumatic stress disorder (PTSD) symptoms of re-experience, avoidance, and hyperarousal in the relationship between different types of trauma and alcohol use disorders (AUD). We used data from 731 trauma-exposed individuals who participated in the first wave of the PsyCoLaus-study. Trauma characteristics were assessed relatively to the occurrence of lifetime PTSD symptoms and AUD. The results suggest that lifetime and childhood sexual abuse as well as overall childhood trauma were directly linked to AUD and PTSD symptoms, in particular to avoidance symptoms. From single symptom clusters PTSD avoidance was found to specifically mediate the trauma-AUD pathway. Both childhood and sexual trauma strongly contribute to the comorbidity of PTSD and AUD and avoidance-type symptoms appear to play a central role in maintaining this association. Hence, the alleviation of avoidance symptoms might be an important target for therapeutic intervention among victims of sexual abuse before specific addiction treatment is initiated.
Resumo:
BACKGROUND: Oxidative stress and the specific impairment of perisomatic gamma-aminobutyric acid circuits are hallmarks of the schizophrenic brain and its animal models. Proper maturation of these fast-spiking inhibitory interneurons normally defines critical periods of experience-dependent cortical plasticity. METHODS: Here, we linked these processes by genetically inducing a redox dysregulation restricted to such parvalbumin-positive cells and examined the impact on critical period plasticity using the visual system as a model (3-6 mice/group). RESULTS: Oxidative stress was accompanied by a significant loss of perineuronal nets, which normally enwrap mature fast-spiking cells to limit adult plasticity. Accordingly, the neocortex remained plastic even beyond the peak of its natural critical period. These effects were not seen when redox dysregulation was targeted in excitatory principal cells. CONCLUSIONS: A cell-specific regulation of redox state thus balances plasticity and stability of cortical networks. Mistimed developmental trajectories of brain plasticity may underlie, in part, the pathophysiology of mental illness. Such prolonged developmental plasticity may, in turn, offer a therapeutic opportunity for cognitive interventions targeting brain plasticity in schizophrenia.
Resumo:
This study examined the role of posttraumatic stress disorder (PTSD) symptoms of re-experience, avoidance, and hyperarousal in the relationship between different types of trauma and alcohol use disorders (AUD). We used data from 731 trauma-exposed individuals who participated in the first wave of the PsyCoLaus-study. Trauma characteristics were assessed relatively to the occurrence of lifetime PTSD symptoms and AUD. The results suggest that lifetime and childhood sexual abuse as well as overall childhood trauma were directly linked to AUD and PTSD symptoms, in particular to avoidance symptoms. From single symptom clusters PTSD avoidance was found to specifically mediate the trauma-AUD pathway. Both childhood and sexual trauma strongly contribute to the comorbidity of PTSD and AUD and avoidance-type symptoms appear to play a central role in maintaining this association. Hence, the alleviation of avoidance symptoms might be an important target for therapeutic intervention among victims of sexual abuse before specific addiction treatment is initiated.
Resumo:
TFIIB-related factor 2 (Brf2) is a member of the family of TFIIB-like core transcription factors. Brf2 recruits RNA polymerase (Pol) III to type III gene-external promoters, including the U6 spliceosomal RNA and selenocysteine tRNA genes. Found only in vertebrates, Brf2 has been linked to tumorigenesis but the underlying mechanisms remain elusive. We have solved crystal structures of a human Brf2-TBP complex bound to natural promoters, obtaining a detailed view of the molecular interactions occurring at Brf2-dependent Pol III promoters and highlighting the general structural and functional conservation of human Pol II and Pol III pre-initiation complexes. Surprisingly, our structural and functional studies unravel a Brf2 redox-sensing module capable of specifically regulating Pol III transcriptional output in living cells. Furthermore, we establish Brf2 as a central redox-sensing transcription factor involved in the oxidative stress pathway and provide a mechanistic model for Brf2 genetic activation in lung and breast cancer.
Redox dysregulation in schizophrenia : effect on myelination of cortical structures and connectivity
Resumo:
Cette thèse traite du rôle qu'un facteur de risque génétique développé chez les patients souffrant de schizophrénie, à savoir un déficit de la synthèse du glutathion, peut jouer dans les anomalies de la connectivité cérébrale trouvées chez ces patients. L'essentiel du travail a été consacré à évaluer la structure de la substance blanche dans l'ensemble du cerveau chez un modèle animal par une méthode similaire à celle utilisée en recherche clinique avec l'imagerie par résonance magnétique (IRM). Cette approche de translation inverse chez la souris knock-out de glutamate-cystéine ligase modulateur sous-unité (Gclm KO), avait l'objectif d'étudier l'effet des défenses redox déficientes sur le développement des connexions cérébrales, tout en excluant celui des facteurs non liés au génotype. Après avoir établi le protocole de recherche, l'influence d'une manipulation environnementale a également été étudiée. Pour effectuer une analyse statistique fiable des données d'IRM obtenues, nous .avons d'abord créé un atlas du cerveau de la souris afin de l'utiliser comme modèle pour une segmentation précise des différentes régions du cerveau sur les images IRM obtenues in vivo. Les données provenant de chaque région d'intérêt ont ensuite été étudiées séparément. La qualité de cette méthode a été évaluée dans une expérience de simulation pour déduire la puissance statistique réalisable dans chaque région en fonction du nombre d'animaux utilisés. Ces outils d'analyse nous ont permis d'évaluer l'intégrité de la substance blanche dans le cerveau des souris durant le développement grâce à une expérience longitudinale, en utilisant l'imagerie du tenseur de diffusion (DTI). Nous avons ainsi observé des anomalies dans les paramètres dérivés du tenseur (diffusivité et anisotropie) dans la Commissure Antérieure et le Fimbria/Fornix des souris Gclm KO, par rapport aux animaux contrôles. Ces résultats suggèrent une substance blanche endommagée dans ces régions. Dans une expérience électrophysiologique, Pascal Steullet a montré que ces anomalies ont des conséquences fonctionnelles caractérisées par une réduction de la vitesse de conduction dans les fibres nerveuses. Ces données renforcent les conclusions des analyses d'imagerie. Le mécanisme par lequel une dérégulation redox affecte la structure de la substance blanche reste encore à définir, car une analyse immunohistochimique des protéines constituantes de la couche de myéline des fibres concernées n'a pas donné de résultats concluants. Nous avons également constaté un élargissement des ventricules dans les jeunes souris Gclm KO, mais pas chez les adultes et des anomalies neurochimiques déjà connues chez ces animaux (Duarte et al. 2011), à savoir une réduction du Glutathion et une augmentation de l'acide N-acétylaspartique, de l'Alanine et du ratio Glutamine/Glutamate. Nous avons ensuite testé l'effet d'un stress environnemental supplémentaire, l'élevage en isolement social, sur le phénotype. Ce stress n'a eu aucun effet sur la structure de la substance blanche évaluée par DTI, mais a réduit la concentration de myo-Inositol et augmenté le ratio de Glutamine/Glutamate dans le cortex frontal. Nous avons aussi reproduit dans ce groupe indépendant d'animaux les effets du génotype sur le profil neurochimique, sur la taille des ventricules et aussi sur les paramètres dérivés du tenseur de diffusion dans le Fimbria/Fornix, mais pas dans la Commissure Antérieure. Nos résultats montrent qu'une dérégulation redox d'origine génétique perturbe la structure et la fonction de la substance blanche dans des régions spécifiques, causant ainsi l'élargissement des ventricules. Ces phénotypes rassemblent certaines caractéristiques neuro-anatomiques de la schizophrénie, mais les mécanismes qui en sont responsables demeurent encore inconnus. L'isolement social n'a pas d'effet sur la structure de la substance blanche évaluée par DTI, alors qu'il est prouvé qu'il affecte la maturation des oligodendrocytes. La neurochimie corticale et en particulier le rapport Glutamine/Glutamate a été affecté par le dérèglement redox ainsi que par l'isolement social. En conséquence, ce ratio représente un indice prometteur dans la recherche sur l'interaction du stress environnemental avec le déséquilibre redox dans le domaine de la schizophrénie. -- The present doctoral thesis is concerned with the role that a genetic risk factor for the development of schizophrenia, namely a deficit in Glutathione synthesis, may play in the anomalies of brain connectivity found in patients. Most of the effort was devoted to perform a whole-brain assessment of white matter structure in the Glutamate-Cysteine ligase modulatory knockout mouse model (Gclm KO) using Magnetic Resonance Imaging (MRI) techniques similar to those used in state-of-the-art clinical research. Such reverse translational approach taking brain imaging from the bedside to the bench aimed to investigate the role that deficient redox defenses may play in the development of brain connections while excluding all influencing factors beside the genotype. After establishing the protocol, the influence of further environmental manipulations was also studied. Analysis of MRI images acquired in vivo was one of the main challenges of the project. Our strategy consisted in creating an atlas of the mouse brain to use as segmentation guide and then analyze the data from each region of interest separately. The quality of the method was assessed in a simulation experiment by calculating the statistical power achievable in each brain region at different sample sizes. This analysis tool enabled us to assess white matter integrity in the mouse brain along development in a longitudinal experiment using Diffusion Tensor Imaging (DTI). We discovered anomalies in diffusivity parameters derived from the tensor in the Anterior Commissure and Fimbria/Fornix of Gclm KO mice when compared to wild-type animals, which suggest that the structure of these tracts is compromised in the KO mice. In an elegant electrophysiological experiment, Pascal Steullet has provided evidence that these anomalies have functional consequences in form of reduced conduction velocity in the concerned tracts, thus supporting the DTI findings. The mechanism by which redox dysregulation affects WM structure remains unknown, for the immunohistochemical analysis of myelin constituent proteins in the concerned tracts produced inconclusive results. Our experiments also detected an enlargement of the lateral ventricles in young but not adult Gclm KO mice and confirmed neurochemical anomalies already known to affect this animals (Duarte et al. 2011), namely a reduction in Glutathione and an increase in Glutamine/Glutamate ratio, N-acetylaspartate and Alanine. Using the same methods, we tested the effect of an additional environmental stress on the observed phenotype: rearing in social isolation had no effect on white matter structure as assessed by DTI, but it reduced the concentration of myo-Inositol and increased the Glutamine/Glutamate ratio in the frontal cortex. We could also replicate in this separate group of animals the effects of genotype on the frontal neurochemical profile, ventricular size and diffusivity parameters in the Fimbria/Fornix but not in the Anterior Commissure. Our data show that a redox dysregulation of genetic origin may disrupt white matter structure and function in specific tracts and cause a ventricular enlargement, phenotypes that resemble some neuroanatomical features of schizophrenia. The mechanism responsible remains however unknown. We have also demonstrated that environmental stress in form of social isolation does not affect white matter structure as assessed by DTI even though it is known to affect oligodendrocyte maturation. Cortical neurochemistry, and specifically the Glutamine to Glutamate balance was affected both by redox dysregulation and social isolation, and is thus a good target for further research on the interaction of redox imbalance and environmental stress in schizophrenia.
Resumo:
The influence of acidity on the synthesis and redox behavior of polypyrrole films was studied using galvanostatic and potentiodynamic techniques employing aqueous solutions formed by H2SO4/Na2SO4 , HCl/NaCl and HCl/CsCl. The chemical structure of the films were investigated using the FTIR technique. The polymer behavior as a function of the pH used in the cyclic voltammetric measurements is explained in terms of the mechanism responsible for the charge compensation formed during the polymer chain oxidation. From the FTIR measurements, it is seen that the water nucleophilic attack during the synthesis, does not occur under the experimental conditions employed in this work.
Resumo:
The skin is a very complex organ, continuously exposed to physical, chemical and microbiological agents. Enzymes as well as low-molecular weight antioxidants are present in the cutaneous tissue to counterbalance the deleterious effect caused by an oxidative stress and thus maintain homeostasis. Antioxidants such as vitamins C and E, carotenoids, and extracts with these properties have been extensively used for treatment of pathologies and skin aging prevention. We review here different mechanisms that can interfere in the redox equilibrium of the skin, as well as the chemical reactions involved in these processes. Moreover, we discuss the importance of endogenous or exogenous antioxidants that can be acquired from the diet or from oral or topical administration, and methodologies that have been developed to evaluate their efficacy.
Resumo:
Determination of Cr(VI) and Cr(III) was studied in soil samples accidentally contaminated with sulphochromic solution. Molecular absorption spectrophotometry based on the diphenylcarbazide method was used for the determination of Cr(VI) after its alkaline extraction. The total chromium concentration was determined using ICP OES. The quantification of Cr(III) was accomplished by subtracting the Cr(VI) concentration from the total chromium concentration. Regardless of the known contamination of the soil samples by sulphochromic solution, concentrations of Cr(VI) were below the detection limit. Addition and recovery experiments for Cr(VI) in soil samples with and without organic matter indicated its influence on the reduction of Cr(VI) to Cr(III).
Resumo:
Previous studies indicated that free radicals control organic matter redox activities. In the present study, organic matter of an ultra-filtrated material collected from seven samples taken seasonally from the Paraiba do Sul River for two years were titrated with an oxidizer (I2) in an inert atmosphere. Standard formal potential values for the electrode MO Ox, MO Red ranged from 0.754 to 0.786 V at a 25 ºC temperature. Organic matter oxidation capacity (COx) per carbon mass varied according to pH values, and changes in COx were related to rainfall and river flow intensities.