846 resultados para red blood cell transfusion


Relevância:

100.00% 100.00%

Publicador:

Resumo:

RNAi (RNA interference) is a powerful technology for sequence-specific targeting of mRNAs. This thesis was aimed at establishing conditions for conditional RNAi-mediated silencing first in vitro and subsequently also in transgenic mice. As a target the basic helix-loop-helix transcription factor encoding gene SCL (stem cell leukaemia also known as Tal-1 or TCL5) was used. SCL is a key regulator for haematopoietic development and ectopic expression of SCL is correlated with acute T-lymphoblastic leukaemias. Loss of SCL function studies demonstrated that ab initio deletion of SCL resulted in embryonic lethality around day E9 in gestation. To be able to conditionally inactivate SCL, RNAi technology was combined with the tetracycline-dependent regulatory system. This strategy allowed to exogenously control the induction of RNAi in a reversible fashion and consequently the generation of a completely switchable RNAi knockdown. First a suitable vector allowing for co-expression of tetracycline-controlled shRNAs (small hairpin RNAs) and constitutively active EGFP (enhanced green fluorescent protein) was generated. This novel vector, pRNAi-EGFP, was then evaluated for EGFP expression and tetracycline-mediated expression of shRNAs. Four sequences targeting different regions within the SCL mRNA were tested for their efficiency to specifically knockdown SCL. These experiments were performed in M1 murine leukaemia cells and subsequently in the HEK 293 cell line, expressing an engineered HA-tagged SCL protein. The second assay provided a solid experimental method for determining the efficiency of different SCL-siRNA knockdown constructs in tissue culture. Western blotting analyses revealed a down regulation of SCL protein for all four tested SCL-specific target sequences albeit with different knockdown efficiencies (between 25% and 100%). Furthermore, stringent tetracycline-dependent switchability of shRNA expression was confirmed by co-transfecting the SCL-specific pRNAi-EGFP vector (SCL-siRNA) together with the HA-tagged SCL expression plasmid into the HEK 293TR /T-REx cell line constitutively expressing the tetracycline repressor (TetR). These series of experiments demonstrated tight regulation of siRNA expression without background activity. To be able to control the SCL knockdown in vivo and especially to circumvent any possible embryonic lethality a transgenic mouse line with general expression of a tetracycline repressor was needed. Two alternative methods were used to generate TetR mice. The first approach was to co-inject the tetracycline-regulated RNAi vector together with a commercially available and here specifically modified T-REx expression vector (SCL-siRNA T-REx FRT LoxP mouse line). The second method involved the generation of a TetR expressor mouse line, which was then used for donating TetR-positive oocytes for pronuclear injection of the RNAi vector (SCL-siRNA T-REx mouse line). As expected, and in agreement with data from conditional Cre-controlled adult SCL knockout mice, post-transcriptional silencing of SCL by RNAi caused a shift in the maturation of red blood cell populations. This was shown in the bone marrow and peripheral blood by FACS analysis with the red blood cell-specific TER119 and CD71 markers which can be used to define erythrocyte differentiation (Lodish plot technique). In conclusion this study established conditions for effective SCL RNAi-mediated silencing in vitro and in vivo providing an important tool for further investigations into the role of SCL and, more generally, of its in vivo function in haematopoiesis and leukaemia. Most importantly, the here acquired knowledge will now allow the establishment of other completely conditional and reversible knockdown phenotypes in mice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SUMOylation is a highly dynamic and reversible posttranslational protein modification closely related to ubiquitination. SUMOylation regulates a vast array of different cellular functions, such as cell cycle, nuclear transport, DNA damage response, proliferation and transcriptional activation. Several groups have shown in in vitro studies how important SUMOylation is for early B cell development and survival as well as for later plasma cell differentiation. This thesis focuses on the deSUMOylation protease SENP1 and its in vivo effects on B cell development and differentiation. For this a conditional SENP1 knockout mouse model was crossed to the CD19-Cre mouse strain to generate a B cell specific SENP1 knockout mouse.rnIn our conditional SENP1ff CD19-Cre mouse model we observed normal numbers of all B cell subsets in the bone marrow. However in the spleen we observed an impairment of B cell survival, based on a 50% reduction of the follicular B cell compartment, whereas the marginal zone B cell compartment was unchanged. T cell numbers were comparable to control mice. rnFurther, impairments of B cell survival in SENP1ff CD19-Cre mice were analysed after in vivo blocking of IL7R signalling. The αIL7R treatment in mature mice blocked new B cell formation in the bone marrow and increased apoptosis rates could be observed in splenic SENP1 KO B cells. Additionally, a higher turnover rate of B cells was measured by in vivo BrdU incorporation.rnSince it is known that the majority of transcription factors that are important for the maintenance of the germinal centre reaction or for induction of plasma cell development are SUMOylated, the question arose, how defective deSUMOylation will manifest itself in these processes. The majority of in vitro cultured splenic B cells, stimulated to undergo class switch recombination and plasma cell differentiation underwent activation induced cell death. However, the surviving cells increasingly differentiated into IgM expressing plasma cells. Class switch recombination to IgG1 was reduced. These observations stood in line with observation made in in vivo sheep red blood cell immunization experiments, which showed increased amounts of germinal centres and germinal centre B cells, as well as increased amounts of plasma cells differentiation in combination with decreased class switch to IgG1.rnThese results lead to the conclusion that SENP1 KO B cells increasingly undergo apoptosis, however, B cells that survive SENP1 deficiency are more prone to undergo plasma cell differentiation. Further, the precursors of these plasma cells either are not as capable of undergoing class switch recombination or they do switch to IgG1 and succumb to activation induced cell death. One possible explanation for both scenarios could be a defective DNA damage response mechanisms during class switch recombination, caused by impaired deSUMOylation. rn

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Because of species selectivity, HIV research is largely restricted to in vitro or clinical studies, both limited in their ability to rapidly assess new strategies to fight the virus. To prospectively study some aspects of HIV in vivo, immunodeficient mice, transplanted with either human peripheral blood leukocytes or human fetal tissues, have been developed. Although these are susceptible to HIV infection, xenoreactivity, and short infection spans, resource and ethical constraints, as well as biased HIV coreceptor tropic strain infection, pose substantial problems in their use. Rag2(-/-)gamma(c)(-/-) mice, transplanted as newborns with human CD34(+) cells, were recently shown to develop human B, T, and dendritic cells, constituting lymphoid organs in situ. Here we tested these mice as a model system for HIV-1 infection. HIV RNA levels peaked to up to 2 x 10(6) copies per milliliter of plasma early after infection, and viremia was observed for up to 190 days, the longest time followed. A marked relative CD4(+) T cell depletion in peripheral blood occurred in CXCR4-tropic strain-infected mice, whereas this was less pronounced in CCR5-tropic strain-infected animals. Thymus infection was almost exclusively observed in CXCR4-tropic strain-infected mice, whereas spleen and lymph node HIV infection occurred irrespective of coreceptor selectivity, consistent with respective coreceptor expression on human CD4(+) T cells. Thus, this straightforward to generate and cost-effective in vivo model closely resembles HIV infection in man and therefore should be valuable to study virus-induced pathology and to rapidly evaluate new approaches aiming to prevent or treat HIV infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sickle red blood cell (SRBC)-endothelial adhesion plays a central role in sickle cell disease (SCD)-related vaso-occlusion. As unusually large von Willebrand factor (ULVWF) multimers mediate SRBC-endothelial adhesion, we investigated the activity of ADAMTS13, the metalloprotease responsible for cleaving ULVWF multimers, in SCD. ADAMTS13 activity was determined using a quantitative immunoblotting assay. VWF:Ag and VWF:RCo were determined using commercial assays. The high-molecular-weight VWF multimer percentage was determined by employing gel electrophoresis. ADAMTS13 activity was similar among asymptomatic patients (n = 8), patients at presentation with a painful crisis (n = 23), and healthy controls. ADAMTS13/VWF:Ag ratios were lower in patients compared to healthy HbAA controls, with the lowest values at presentation with a painful crisis (P = 0.02). Division of samples in those with VWF:RCo/VWF:Ag ratios < 0.70 and those with ratios >or= 0.70 revealed significantly more samples with ratios >or= 0.70 (P = 0.01) collected during painful crises. ULVWF multimers were detected in 6 patient samples and in 1 control sample. ADAMTS13/VWF:Ag ratios were inversely related to the duration of symptoms at presentation with an acute vaso-occlusive event (r(s)-0.67, P = 0.002). Although SCD is characterized by elevated VWF:Ag levels, no severe ADAMTS13 deficiency was detected in our patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Erythropoiesis-stimulating agents (ESAs) reduce anemia in cancer patients and may improve quality of life, but there are concerns that ESAs might increase mortality. OBJECTIVES: Our objectives were to examine the effect of ESAs and identify factors that modify the effects of ESAs on overall survival, progression free survival, thromboembolic and cardiovascular events as well as need for transfusions and other important safety and efficacy outcomes in cancer patients. SEARCH STRATEGY: We searched the Cochrane Library, Medline, Embase and conference proceedings for eligible trials. Manufacturers of ESAs were contacted to identify additional trials. SELECTION CRITERIA: We included randomized controlled trials comparing epoetin or darbepoetin plus red blood cell transfusions (as necessary) versus red blood cell transfusions (as necessary) alone, to prevent or treat anemia in adult or pediatric cancer patients with or without concurrent antineoplastic therapy. DATA COLLECTION AND ANALYSIS: We performed a meta-analysis of randomized controlled trials comparing epoetin alpha, epoetin beta or darbepoetin alpha plus red blood cell transfusions versus transfusion alone, for prophylaxis or therapy of anemia while or after receiving anti-cancer treatment. Patient-level data were obtained and analyzed by independent statisticians at two academic departments, using fixed-effects and random-effects meta-analysis. Analyses were according to the intention-to-treat principle. Primary endpoints were on study mortality and overall survival during the longest available follow-up, regardless of anticancer treatment, and in patients receiving chemotherapy. Tests for interactions were used to identify differences in effects of ESAs on mortality across pre-specified subgroups. The present review reports only the results for the primary endpoint. MAIN RESULTS: A total of 13933 cancer patients from 53 trials were analyzed, 1530 patients died on-study and 4993 overall. ESAs increased on study mortality (combined hazard ratio [cHR] 1.17; 95% CI 1.06-1.30) and worsened overall survival (cHR 1.06; 95% CI 1.00-1.12), with little heterogeneity between trials (I(2) 0%, p=0.87 and I(2) 7.1%, p=0.33, respectively). Thirty-eight trials enrolled 10441 patients receiving chemotherapy. The cHR for on study mortality was 1.10 (95% CI 0.98-1.24) and 1.04; 95% CI 0.97-1.11) for overall survival. There was little evidence for a difference between trials of patients receiving different cancer treatments (P for interaction=0.42). AUTHORS' CONCLUSIONS: ESA treatment in cancer patients increased on study mortality and worsened overall survival. For patients undergoing chemotherapy the increase was less pronounced, but an adverse effect could not be excluded.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Erythropoiesis-stimulating agents reduce anaemia in patients with cancer and could improve their quality of life, but these drugs might increase mortality. We therefore did a meta-analysis of randomised controlled trials in which these drugs plus red blood cell transfusions were compared with transfusion alone for prophylaxis or treatment of anaemia in patients with cancer. METHODS: Data for patients treated with epoetin alfa, epoetin beta, or darbepoetin alfa were obtained and analysed by independent statisticians using fixed-effects and random-effects meta-analysis. Analyses were by intention to treat. Primary endpoints were mortality during the active study period and overall survival during the longest available follow-up, irrespective of anticancer treatment, and in patients given chemotherapy. Tests for interactions were used to identify differences in effects of erythropoiesis-stimulating agents on mortality across prespecified subgroups. FINDINGS: Data from a total of 13 933 patients with cancer in 53 trials were analysed. 1530 patients died during the active study period and 4993 overall. Erythropoiesis-stimulating agents increased mortality during the active study period (combined hazard ratio [cHR] 1.17, 95% CI 1.06-1.30) and worsened overall survival (1.06, 1.00-1.12), with little heterogeneity between trials (I(2) 0%, p=0.87 for mortality during the active study period, and I(2) 7.1%, p=0.33 for overall survival). 10 441 patients on chemotherapy were enrolled in 38 trials. The cHR for mortality during the active study period was 1.10 (0.98-1.24), and 1.04 (0.97-1.11) for overall survival. There was little evidence for a difference between trials of patients given different anticancer treatments (p for interaction=0.42). INTERPRETATION: Treatment with erythropoiesis-stimulating agents in patients with cancer increased mortality during active study periods and worsened overall survival. The increased risk of death associated with treatment with these drugs should be balanced against their benefits. FUNDING: German Federal Ministry of Education and Research, Medical Faculty of University of Cologne, and Oncosuisse (Switzerland).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Although associated with adverse outcomes in other cardiovascular diseases, the prognostic value of an elevated white blood cell (WBC) count, a marker of inflammation and hypercoagulability, is uncertain in patients with pulmonary embolism (PE). We therefore sought to assess the prognostic impact of the WBC in a large, state-wide retrospective cohort of patients with PE. We evaluated 14,228 patient discharges with a primary diagnosis of PE from 186 hospitals in Pennsylvania. We used random-intercept logistic regression to assess the independent association between WBC count levels at the time of presentation and mortality and hospital readmission within 30 days, adjusting for patient and hospital characteristics. Patients with an admission WBC count <5.0, 5.0-7.8, 7.9-9.8, 9.9-12.6, and >12.6 × 10(9) /L had a cumulative 30-day mortality of 10.9%, 6.2%, 5.4%, 8.3%, and 16.3% (P < 0.001), and a readmission rate of 17.6%, 11.9%, 10.9%, 11.5%, and 15.0%, respectively (P < 0.001). Compared with patients with a WBC count 7.9-9.8 × 10(9) /L, adjusted odds of 30-day mortality were significantly greater for patients with a WBC count <5.0 × 10(9) /L (odds ratio [OR] 1.52, 95% confidence interval [CI] 1.14-2.03), 9.9-12.6 × 10(9) /L (OR 1.55, 95% CI 1.26-1.91), or >12.6 × 10(9) /L (OR 2.22, 95% CI 1.83-2.69), respectively. The adjusted odds of readmission were also significantly increased for patients with a WBC count <5.0 × 10(9) /L (OR 1.34, 95% CI 1.07-1.68) or >12.6 × 10(9) /L (OR 1.29, 95% CI 1.10-1.51). In patients presenting with PE, WBC count is an independent predictor of short-term mortality and hospital readmission.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sickle cell anemia (SCA) is a hemolytic disease characterized by the production of abnormal hemoglobin chains and distorted red blood cell morphology or sickling. "Sickle cell crisis" includes vaso-occlusive crisis, a plastic crisis, sequestration crisis, haemolytic crisis and often culminating in serious complications, organ damage and even sudden death. Post-mortem computed tomography (PMCT) findings of sickle cell disease have never been reported in literature. This case of sudden death from acute hemolytic crisis in SCA where post-mortem computed tomography (PMCT) and autopsy findings complemented each other, both revealing findings invisible to the other and both crucial to the case.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a number of clinical circumstances it would be desirable to artificially conceal cellular antigenic determinants to permit survival of heterologous donor cells. A case in point is the problem encountered in transfusions of patients with rare blood types or chronically transfused patients who become allosensitized to minor blood group determinants. We have tested the possibility that chemical modification of the red blood cell (RBC) membrane might serve to occlude antigenic determinants, thereby minimizing transfusion reactions. To this end, we have covalently bound methoxy(polyethylene glycol) (mPEG) to the surface of mammalian RBC via cyanuric chloride coupling. Human RBC treated with this technique lose ABO blood group reactivity as assessed by solution–phase antisera agglutination. In accord with this, we also find a profound decrease in anti-blood group antibody binding. Furthermore, whereas human monocytes avidly phagocytose untreated sheep RBC, mPEG-derivatized sheep RBC are ineffectively phagocytosed. Surprisingly, human and mouse RBC appear unaffected by this covalent modification of the cell membrane. Thus, mPEG-treated RBC are morphologically normal, have normal osmotic fragility, and mPEG-derivatized murine RBC have normal in vivo survival, even following repeated infusions. Finally, in preliminary experiments, mPEG-modified sheep RBC intraperitoneally transfused into mice show significantly improved (up to 360-fold) survival when compared with untreated sheep RBC. We speculate that similar chemical camouflage of intact cells may have significant clinical applications in both transfusion (e.g., allosensitization and autoimmune hemolytic disease) and transplantation (e.g., endothelial cells and pancreatic β cells) medicine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background-Elevated serum inflammatory marker levels are associated with a greater long-term risk of cardiovascular events. Because 3-hydroxy-3-methylglutaryl coenzyme-A reductase inhibitors (statins) may have an antiinflammatory action, it has been suggested that patients with elevated inflammatory marker levels may have a greater reduction in cardiovascular risk with statin treatment. Methods and Results-We evaluated the association between the white blood cell count (WBC) and coronary heart disease mortality during a mean follow-up of 6.0 years in the Long-Term Intervention With Pravastatin in Ischemic Disease (LIPID) Study, a clinical trial comparing pravastatin (40 mg/d) with a placebo in 9014 stable patients with previous myocardial infarction or unstable angina. An increase in baseline WBC was associated with greater coronary heart disease mortality in patients randomized to placebo (hazard ratio for 1 X 10(9)/L increase in WBC, 1.18; 95% CI, 1.12 to 1.25; P<0.001) but not pravastatin (hazard ratio, 1.02; 95% CI, 0.96 to 1.09; P=0.56; P for interaction=0.004). The numbers of coronary heart disease deaths prevented per 1000 patients treated with pravastatin were 0, 9, 30, and 38 for baseline WBC quartiles of <5.9, 6.0 to 6.9, 7.0 to 8.1, and >8.2X10(9)/L, respectively. WBC was a stronger predictor of this treatment benefit than the ratio of total to high-density lipoprotein cholesterol and a global measure of cardiac risk. There was also a greater reduction (P=0.052) in the combined incidence of cardiovascular mortality, nonfatal myocardial infarction, and stroke with pravastatin as baseline WBC increased ( by quartile: 3, 41, 61, and 60 events prevented per 1000 patients treated, respectively). Conclusions-These data support the hypothesis that individuals with evidence of inflammation may obtain a greater benefit from statin therapy.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The blood types determination is essential to perform safe blood transfusions. In emergency situations isadministrated the “universal donor” blood type. However, sometimes, this blood type can cause incom-patibilities in the transfusion receptor. A mechatronic prototype was developed to solve this problem.The prototype was built to meet specific goals, incorporating all the necessary components. The obtainedsolution is close to the final system that will be produced later, at industrial scale, as a medical device.The prototype is a portable and low cost device, and can be used in remote locations. A computer appli-cation, previously developed is used to operate with the developed mechatronic prototype, and obtainautomatically test results. It allows image acquisition, processing and analysis, based on Computer Visionalgorithms, Machine Learning algorithms and deterministic algorithms. The Machine Learning algorithmsenable the classification of occurrence, or alack of agglutination in the mixture (blood/reagents), and amore reliable and a safer methodology as test data are stored in a database. The work developed allowsthe administration of a compatible blood type in emergency situations, avoiding the discontinuity of the“universal donor” blood type stocks, and reducing the occurrence of human errors in the transfusion practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The metabolic function of the glyoxalase system was investigated in (a) the differentiation and proliferation of human tumour cells in vitro, (b) the cell-free assembly of microtubules and (c) in the red blood cells during hyperglycaemia associated with Diabetes Mellitus. Chemically-induced differentiation of human promyelocytic HL60 leukaemia cells to neutrophils, and K562 erythroleukaemia cells, was accompanied by a decrease and an increase in the activity of glyoxalase I, respectively. Growth-arrest of Burkitt's lymphoma Raji cells and GM892 lymphoblastoid cells was accompanied by an increase and a decrease in the activity of glyoxalase I respectively. However, differentiation and growth arrest generally proceeded with an increase in the activity of glyoxalase II. Glyoxalase I activity did not consistently correlate with cell differentiation or proliferation status; hence, it is unlikely that glyoxalase I activity is either an indicator or a regulator of cell differentiation or proliferation. Conversely, glyoxalase II activity consistently increased during cell differentiation and growth-arrest and may be both an indicator and regulator of cell differentiation or proliferation. This may be related to the control of cellular microtubule assembly. S-D-Lactoylglutathione potentiated the cell-free, GTP-promoted assembly of microtubules. The effect was dose-related and was inhibited by glyoxalase II. During assembly, S-D-lactoylglutathione was consumed. This suggests that the glyoxalase system, through the influence of S-D-lactoylglutathione, may regulate the assembly of microtubules in cellular systems The whole blood concentrations of methylglyoxal and S-D-lactoylglutathione were increased in Diabetes Mellitus. There was no significant difference between red blood cell glyoxalase activities in diabetics, compared to healthy controls. However, insulin-dependent diabetic patients with retinopathy had a significantly higher glyoxalase I activity and a lower glyoxalase II activity, than patients without retinopathy. Diabetic retinopathy correlated with high glyoxalase I activity and low glyoxalase II activity and suggests the glyoxalase system may be involved in the development of diabetic complications.