945 resultados para reactive gliosis
Resumo:
The goal of our study is to assess the diagnostic profi tability of procalcitonin (PCT) in septic shock and another biomarker as C-reactive protein (CRP). Results: Fifty-four septic patients were assessed, 66% were males; mean age, 63 years. Eighty-eight percent was diagnosed as septic shock and 11% severe sepsis. Seventy-six percent were medical patients. Positive blood cultures in 42.5%. Sepsis origin: respiratory 46%, neurological 5%, digestive 37% and urinary 3%. Average SOFA score was 10.4. Conclusions: PCT and CRP have the same efficiency in early sepsis diagnosis. The PCT and CRP effi ciency diagnostic together is signifi cant but small. We suggest using both with the doubt of sepsis.
Resumo:
The haematological changes and release of soluble mediators, particularly C-reactive protein (CRP) and nitric oxide (NO), during uncomplicated malaria have not been well studied, especially in Brazilian areas in which the disease is endemic. Therefore, the present study examined these factors in acute (day 0) and convalescent phase (day 15) patients infected with Plasmodium falciparum and Plasmodium vivax malaria in the Brazilian Amazon. Haematologic parameters were measured using automated cell counting, CRP levels were measured with ELISA and NO plasma levels were measured by the Griess reaction. Our data indicate that individuals with uncomplicated P. vivax and P. falciparum infection presented similar inflammatory profiles with respect to white blood cells, with high band cell production and a considerable degree of thrombocytopaenia during the acute phase of infection. Higher CRP levels were detected in acute P. vivax infection than in acute P. falciparum infection, while higher NO was detected in patients with acute and convalescent P. falciparum infections. Although changes in these mediators cannot predict malaria infection, the haematological aspects associated with malaria infection, especially the roles of platelets and band cells, need to be investigated further.
Resumo:
The rebinding of NO to myoglobin after photolysis is studied using the 'reactive molecular dynamics' method. In this approach the energy of the system is evaluated on two potential energy surfaces that include the heme-ligand interactions which change between liganded and unliganded myoglobin. This makes it possible to take into account in a simple way, the high dimensionality of the transition seam connecting the reactant and product states. The dynamics of the dissociated NO molecules are examined, and the geometrical and energetic properties of the transition seam are studied. Analysis of the frequency of recrossing shows that the height of the effective rebinding barrier is dependent on the time after photodissociation. This effect is due mainly to protein relaxation and may contribute to the experimentally observed non-exponential rebinding rate of NO, as has been suggested previously.
Resumo:
The PfCLAG9 has been extensively studied because their immunogenicity. Thereby, the gene product is important for therapeutics interventions and a potential vaccine candidate. Antibodies against synthetic peptides corresponding to selected sequences of the Plasmodium falciparum antigen PfCLAG9 were found in sera of falciparum malaria patients from Rondônia, in the Brazilian Amazon. Much higher antibody titres were found in semi-immune and immune asymptomatic parasite carriers than in subjects suffering clinical infections, corroborating original findings in Papua Guinea. However, sera of Plasmodium vivax patients from the same Amazon area, in particular from asymptomatic vivax parasite carriers, reacted strongly with the same peptides. Bioinformatic analyses revealed regions of similarity between P. falciparum Pfclag9 and the P. vivax ortholog Pvclag7. Indirect fluorescent microscopy analysis showed that antibodies against PfCLAG9 peptides elicited in BALB/c mice react with human red blood cells (RBCs) infected with both P. falciparum and P. vivax parasites. The patterns of reactivity on the surface of the parasitised RBCs are very similar. The present observations support previous findings that PfCLAG9 may be a target of protective immune responses and raises the possibility that the cross reactive antibodies to PvCLAG7 in mixed infections play a role in regulate the fate of Plasmodium mixed infections.
Resumo:
Soy extracts have been claimed to be neuroprotective against brain insults, an effect related to the estrogenic properties of isoflavones. However, the effects of individual isoflavones on obesity-induced disruption of adult neurogenesis have not yet been analyzed. In the present study we explore the effects of pharmacological administration of daidzein, a main soy isoflavone, in cell proliferation, cell apoptosis and gliosis in the adult hippocampus of animals exposed to a very high-fat diet. Rats made obese after 12-week exposure to a standard or high-fat (HFD, 60%) diets were treated with daidzein (50 mg kg(-1)) for 13 days. Then, plasma levels of metabolites and metabolic hormones, cell proliferation in the subgranular zone of the dentate gyrus (SGZ), and immunohistochemical markers of hippocampal cell apoptosis (caspase-3), gliosis (GFAP and Iba-1), food reward factor FosB and estrogen receptor alpha (ERα) were analyzed. Treatment with daidzein reduced food/caloric intake and body weight gain in obese rats. This was associated with glucose tolerance, low levels of HDL-cholesterol, insulin, adiponectin and testosterone, and high levels of leptin and 17β-estradiol. Daidzein increased the number of phospho-histone H3 and 5-bromo-2-deoxyuridine (BrdU)-ir cells detected in the SGZ of standard diet and HFD-fed rats. Daidzein reversed the HFD-associated enhanced immunohistochemical expression of caspase-3, FosB, GFAP, Iba-1 and ERα in the hippocampus, being more prominent in the dentate gyrus. These results suggest that pharmacological treatment with isoflavones regulates metabolic alterations associated with enhancement of cell proliferation and reduction of apoptosis and gliosis in response to high-fat diet.
Resumo:
Microglial cells react early to a neurotoxic insult. However, the bioactive factors and the cell-cell interactions leading to microglial activation and finally to a neuroprotective or neurodegenerative outcome remain to be elucidated. Therefore, we analyzed the microglial reaction induced by methylmercury (MeHgCl) using cell cultures of different complexity. Isolated microglia were found to be directly activated by MeHgCl (10(-10) to 10(-6) M), as indicated by process retraction, enhanced lectin staining, and cluster formation. An association of MeHgCl-induced microglial clusters with astrocytes and neurons was observed in three-dimensional cultures. Close proximity was found between the clusters of lectin-stained microglia and astrocytes immunostained for glial fibrillary acidic protein (GFAP), which may facilitate interactions between astrocytes and reactive microglia. In contrast, immunoreactivity for microtubule-associated protein (MAP-2), a neuronal marker, was absent in the vicinity of the microglial clusters. Interactions between astrocytes and microglia were studied in cocultures treated for 10 days with MeHgCl. Interleukin-6 release was increased at 10(-7) M of MeHgCl, whereas it was decreased when each of these two cell types was cultured separately. Moreover, addition of IL-6 to three-dimensional brain cell cultures treated with 3 x 10(-7) M of MeHgCl prevented the decrease in immunostaining of the neuronal markers MAP-2 and neurofilament-M. IL-6 administered to three-dimensional cultures in the absence of MeHgCl caused astrogliosis, as indicated by increased GFAP immunoreactivity. Altogether, these results show that microglial cells are directly activated by MeHgCl and that the interaction between activated microglia and astrocytes can increase local IL-6 release, which may cause astrocyte reactivity and neuroprotection.
Resumo:
Synthetic combinatorial peptide libraries in positional scanning format (PS-SCL) have recently emerged as a useful tool for the analysis of T cell recognition. This includes identification of potentially cross-reactive sequences of self or pathogen origin that could be relevant for the understanding of TCR repertoire selection and maintenance, as well as of the cross-reactive potential of Ag-specific immune responses. In this study, we have analyzed the recognition of sequences retrieved by using a biometric analysis of the data generated by screening a PS-SCL with a tumor-reactive CTL clone specific for an immunodominant peptide from the melanocyte differentiation and tumor-associated Ag Melan-A. We found that 39% of the retrieved peptides were recognized by the CTL clone used for PS-SCL screening. The proportion of peptides recognized was higher among those with both high predicted affinity for the HLA-A2 molecule and high predicted stimulatory score. Interestingly, up to 94% of the retrieved peptides were cross-recognized by other Melan-A-specific CTL. Cross-recognition was at least partially focused, as some peptides were cross-recognized by the majority of CTL. Importantly, stimulation of PBMC from melanoma patients with the most frequently recognized peptides elicited the expansion of heterogeneous CD8(+) T cell populations, one fraction of which cross-recognized Melan-A. Together, these results underline the high predictive value of PS-SCL for the identification of sequences cross-recognized by Ag-specific T cells.
Resumo:
BACKGROUND: Insulin-like growth factor-I (IGF-I) and C-reactive protein (CRP) may be positively associated with the risk of epithelial ovarian cancer (EOC) but no previous studies have investigated their associations with non-epithelial ovarian cancers (NEOC). METHODS: A case-control study was nested within the Finnish Maternity Cohort. Case subjects were 58 women diagnosed with sex cord-stromal tumors (SCST) and 30 with germ cell tumors (GCT) after recruitment. Control subjects (144 for SCST and 74 for GCT) were matched for age, parity, and date of blood donation of the index case. RESULTS: Doubling of IGF-I concentration was not related to maternal risk of either SCST (OR 0.97, 95% CI 0.58-1.62) or GCT (OR 1.13, 95% CI 0.51-2.51). Similarly, doubling of CRP concentrations was not related to maternal risk of either SCST (OR 1.10, 95% CI 0.85-1.43) or GCT (OR 0.93, 95% CI 0.68-1.28). CONCLUSIONS: Pre-diagnostic IGF-I and CRP concentrations during the first trimester of pregnancy were not associated with increased risk of NEOC in the mother. Risk factors for NEOC may differ from those of EOC.
Resumo:
The interferon (IFN)-γ response to peptides can be a useful diagnostic marker of Mycobacterium tuberculosis (MTB) latent infection. We identified promiscuous and potentially protective CD4+ T-cell epitopes from the most conserved regions of MTB antigenic proteins by scanning the MTB antigenic proteins GroEL2, phosphate-binding protein 1 precursor and 19 kDa antigen with the TEPITOPE algorithm. Seven peptide sequences predicted to bind to multiple human leukocyte antigen (HLA)-DR molecules were synthesised and tested with IFN-γ enzyme-linked immunospot (ELISPOT) assays using peripheral blood mononuclear cells (PBMCs) from 16 Mantoux tuberculin skin test (TST)-positive and 16 TST-negative healthy donors. Eighty-eight percent of TST-positive donors responded to at least one of the peptides, compared to 25% of TST-negative donors. Each individual peptide induced IFN-γ production by PBMCs from at least 31% of the TST-positive donors. The magnitude of the response against all peptides was 182 ± 230 x 106 IFN-γ spot forming cells (SFC) among TST-positive donors and 36 ± 62 x 106 SFC among TST-negative donors (p = 0.007). The response to GroEL2 (463-477) was only observed in the TST-positive group. This combination of novel MTB CD4 T-cell epitopes should be tested in a larger cohort of individuals with latent tuberculosis (TB) to evaluate its potential to diagnose latent TB and it may be included in ELISPOT-based IFN-γ assays to identify individuals with this condition.
Resumo:
There is evidence that reactive hyperemia (ie, the transient increase of blood flow above resting level after a short period of ischemia) could be negatively modulated by vasoconstrictor prostanoids. The present study tested whether pharmacological blockade of the thromboxane prostanoid receptors with the specific antagonist S18886 (terutroban) would amplify reactive hyperemia in human skin and skeletal muscle. Twenty healthy young male volunteers were enrolled in a randomized, blinded, crossover trial of oral S18886 30 mg/d for 5 days versus placebo. Reactive hyperemia was evaluated in forearm skin and skeletal muscle, after occlusion of the brachial artery with a pneumatic cuff inflated at suprasystolic pressure. Blood flow was measured with laser Doppler imaging (skin) and strain gauge venous occlusion plethysmography (muscle). On the first and last day of each treatment period, recordings of reactive hyperemia were obtained immediately before and 2 hours after drug intake. Whether in forearm muscle or skin, S18886 had no discernible effect on peak postocclusion blood flow, nor on the global hyperemic response as quantified by the area under curve. These results do not support that thromboxane prostanoid receptor activation could exert a moderating influence on reactive hyperemia in human skin and skeletal muscle, at least in young subjects.
Resumo:
Background: APACHE-II IS a score, based on several clinical and analytical measurements within 24 hours of admission in Intensive Care Unit (ICU). C-Reactive Protein (CRP), Lactate and recently Procalcitonin (PCT), also are biomarkers for the assessment of septic patients. The aim of this study was to find out if CRP, lactate and PCT during the first 24 hours from severe sepsis or septic shock onset, improved prediction of the APACHE II in terms of prognosis. Conclusions: CRP improves the prediction of patients with sepsis used in conjunction with the APACHE II score in severe sepsis and, lactate along with the CRP are the best precictors of survival in the cases of septic shock. The PCT did not show any predictive value.
Resumo:
The new ACE inhibitor trandolapril was administered to normal volunteers at daily doses of 0.5, 2, and 8 mg for 10 days. Twenty-one volunteers, aged 21-30 years, were included in the study. To randomly selected groups of seven subjects, each dose was administered in a single-blind fashion. None of the doses induced a consistent fall in blood pressure. Angiotensin-converting enzyme activity (ACE) was measured in vitro using three different synthetic substrates (i.e., Hip-Gly-Gly, Z-Phe-His-Leu, or angiotensin I). Although the degree of ACE inhibition assessed with the three methods varied widely, all methods clearly indicated dose-dependent ACE inhibition. These in vitro results were confirmed by measuring ACE inhibition in vivo using the ratio of plasma angiotensin II (ANG II) to blood angiotensin I (ANG I). The dose-dependent ACE inhibition was paralleled by a dose-dependent rise in active renin and blood angiotensin I levels, most evident on day 10. In contrast, plasma ANG II levels on day 10 were not different whether the volunteers received 0.5 or 8 mg trandolapril. Thus, whereas increasing doses of this new ACE inhibitor progressively enhanced the blockade of ACE activity, this was not reflected by additional reductions of plasma ANG II levels. The progressive enhancement of ACE inhibition seemed to be offset by the accentuation of the compensatory rise in renin and ANG I, which was still partially converted to ANG II.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
To modulate alloreactivity after hematopoietic stem cell transplantation, "suicide" gene-modified donor T cells (GMCs) have been administered with an allogeneic T-cell-depleted marrow graft. We previously demonstrated that such GMCs, generated after CD3 activation, retrovirus-mediated transduction, and G418 selection, had an impaired Epstein-Barr virus (EBV) reactivity, likely to result in an altered control of EBV-induced lymphoproliferative disease. To further characterize the antiviral potential of GMCs, we compared the frequencies of cytomegalovirus (CMV)-specific CD8+ T (CMV-T) cells and EBV-specific CD8+ T (EBV-T) cells within GMCs from CMV- and EBV-double seropositive donors. Unlike anti-EBV responses, the anti-CMV responses were not altered by GMC preparation. During the first days of culture, CMV-T cells exhibited a lower level of CD3-induced apoptosis than did EBV-T cells. In addition, the CMV-T cells escaping initial apoptosis subsequently underwent a higher expansion rate than EBV-T cells. The differential early sensitivity to apoptosis could be in relation to the "recent activation" phenotype of EBV-T cells as evidenced by a higher level of CD69 expression. Furthermore, EBV-T cells were found to have a CD45RA-CD27+CCR7- effector memory phenotype, whereas CMV-T cells had a CD45RA+CD27-CCR7- terminal effector phenotype. Such differences could be contributive, because bulk CD8+CD27- cells had a higher expansion than did bulk CD8+CD27+ cells. Overall, ex vivo T-cell culture differentially affects apoptosis, long-term proliferation, and overall survival of CMV-T and EBV-T cells. Such functional differences need to be taken into account when designing cell and/or gene therapy protocols involving ex vivo T-cell manipulation.