969 resultados para ranking-menetelmä
Resumo:
In this note, we show that an extension of a test for perfect ranking in a balanced ranked set sample given by Li and Balakrishnan (2008) to the multi-cycle case turns out to be equivalent to the test statistic proposed by Frey et al. (2007). This provides an alternative interpretation and motivation for their test statistic.
Resumo:
The biomedical literature is extensively catalogued and indexed in MEDLINE. MEDLINE indexing is done by trained human indexers, who identify the most important concepts in each article, and is expensive and inconsistent. Automating the indexing task is difficult: the National Library of Medicine produces the Medical Text Indexer (MTI), which suggests potential indexing terms to the indexers. MTI’s output is not good enough to work unattended. In my thesis, I propose a different way to approach the indexing task called MEDRank. MEDRank creates graphs representing the concepts in biomedical articles and their relationships within the text, and applies graph-based ranking algorithms to identify the most important concepts in each article. I evaluate the performance of several automated indexing solutions, including my own, by comparing their output to the indexing terms selected by the human indexers. MEDRank outperformed all other evaluated indexing solutions, including MTI, in general indexing performance and precision. MEDRank can be used to cluster documents, index any kind of biomedical text with standard vocabularies, or could become part of MTI itself.
Resumo:
Information overload is a significant problem for modern medicine. Searching MEDLINE for common topics often retrieves more relevant documents than users can review. Therefore, we must identify documents that are not only relevant, but also important. Our system ranks articles using citation counts and the PageRank algorithm, incorporating data from the Science Citation Index. However, citation data is usually incomplete. Therefore, we explore the relationship between the quantity of citation information available to the system and the quality of the result ranking. Specifically, we test the ability of citation count and PageRank to identify "important articles" as defined by experts from large result sets with decreasing citation information. We found that PageRank performs better than simple citation counts, but both algorithms are surprisingly robust to information loss. We conclude that even an incomplete citation database is likely to be effective for importance ranking.
Resumo:
Information overload is a significant problem for modern medicine. Searching MEDLINE for common topics often retrieves more relevant documents than users can review. Therefore, we must identify documents that are not only relevant, but also important. Our system ranks articles using citation counts and the PageRank algorithm, incorporating data from the Science Citation Index. However, citation data is usually incomplete. Therefore, we explore the relationship between the quantity of citation information available to the system and the quality of the result ranking. Specifically, we test the ability of citation count and PageRank to identify "important articles" as defined by experts from large result sets with decreasing citation information. We found that PageRank performs better than simple citation counts, but both algorithms are surprisingly robust to information loss. We conclude that even an incomplete citation database is likely to be effective for importance ranking.
Resumo:
Many techniques based on data which are drawn by Ranked Set Sampling (RSS) scheme assume that the ranking of observations is perfect. Therefore it is essential to develop some methods for testing this assumption. In this article, we propose a parametric location-scale free test for assessing the assumption of perfect ranking. The results of a simulation study in two special cases of normal and exponential distributions indicate that the proposed test performs well in comparison with its leading competitors.
Resumo:
We developed a model to calculate a quantitative risk score for individual aquaculture sites. The score indicates the risk of the site being infected with a specific fish pathogen (viral haemorrhagic septicaemia virus (VHSV); infectious haematopoietic necrosis virus, Koi herpes virus), and is intended to be used for risk ranking sites to support surveillance for demonstration of zone or member state freedom from these pathogens. The inputs to the model include a range of quantitative and qualitative estimates of risk factors organised into five risk themes (1) Live fish and egg movements; (2) Exposure via water; (3) On-site processing; (4) Short-distance mechanical transmission; (5) Distance-independent mechanical transmission. The calculated risk score for an individual aquaculture site is a value between zero and one and is intended to indicate the risk of a site relative to the risk of other sites (thereby allowing ranking). The model was applied to evaluate 76 rainbow trout farms in 3 countries (42 from England, 32 from Italy and 2 from Switzerland) with the aim to establish their risk of being infected with VHSV. Risk scores for farms in England and Italy showed great variation, clearly enabling ranking. Scores ranged from 0.002 to 0.254 (mean score 0.080) in England and 0.011 to 0.778 (mean of 0.130) for Italy, reflecting the diversity of infection status of farms in these countries. Requirements for broader application of the model are discussed. Cost efficient farm data collection is important to realise the benefits from a risk-based approach.
Resumo:
Este es un estudio sobre utilización de medicamentos donde se analiza la evolución de la prescripción, en DAMSU de UNCuyo, de los 14 grupos terapéuticos (GT) de la clasificación ATC, durante 4 años consecutivos. Su objetivo fue determinar la prevalencia de las prescripciones en los 3 primeros niveles de la clasificación. Los datos fueron recolectados en los meses de abril, junio, setiembre y diciembre utilizando la metodología del DURG y procesados con un programa EPI INFO. Las comparaciones estadísticas fueron realizadas mediante la Prueba no paramétrica de los Signos. El ranking de GT fue constante pero el total de prescripciones disminuyó significativamente entre 2004 y 2007. Los GT del 1º nivel: S. Nervioso (N), S. cardiovascular (C), Digestivo y Metabolismo (A) y Músculo-esquelético (M), ocuparon, en orden decreciente, los cuatro primeros puestos del ranking durante los 4 años. De estos GT fueron analizados los subgrupos del 2º y 3º nivel. La prescripción de Psicolépticos + Psicoanalépticos superó a la de Analgésicos en el grupo N. En el grupo C los Agentes Antihipertensivos, y entre ellos los IECAs, encabezaron el ranking. Las vitaminas fueron las primeras en el GT A y el subgrupo de Antiinflamatorios y Antirreumáticos en el GT M. Se discuten estos resultados en función de la racionalidad de las prescripciones.