951 resultados para random first-order transition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work deals with a first-order formalism for dark energy and dust in standard cosmology, for models described by a real scalar field in the presence of dust in spatially flat space. The field dynamics may be standard or tachyonic, and we show how the equations of motion can be solved by first-order differential equations. We investigate a model to illustrate how the dustlike matter may affect the cosmic evolution using this framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we analyze systems described by Lagrangians with higher order derivatives in the context of the Hamilton-Jacobi formalism for first order actions. Two different approaches are studied here: the first one is analogous to the description of theories with higher derivatives in the hamiltonian formalism according to [D.M. Gitman, S.L. Lyakhovich, I.V. Tyutin, Soviet Phys. J. 26 (1983) 730; D.M. Gitman, I.V. Tyutin, Quantization of Fields with Constraints, Springer-Verlag, New York, Berlin, 1990] the second treats the case where degenerate coordinate are present, in an analogy to reference [D.M. Gitman, I.V. Tyutin, Nucl. Phys. B 630 (2002) 509]. Several examples are analyzed where a comparison between both approaches is made. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analytical models for studying the dynamical behaviour of objects near interior, mean motion resonances are reviewed in the context of the planar, circular, restricted three-body problem. The predicted widths of the resonances are compared with the results of numerical integrations using Poincare surfaces of section with a mass ratio of 10(-3) (similar to the Jupiter-Sun case). It is shown that for very low eccentricities the phase space between the 2:1 and 3:2 resonances is predominantly regular, contrary to simple theoretical predictions based on overlapping resonance. A numerical study of the 'evolution' of the stable equilibrium point of the 3:2 resonance as a function of the Jacobi constant shows how apocentric libration at the 2:1 resonance arises; there is evidence of a similar mechanism being responsible for the centre of the 4:3 resonance evolving towards 3:2 apocentric libration. This effect is due to perturbations from other resonances and demonstrates that resonances cannot be considered in isolation. on theoretical grounds the maximum libration width of first-order resonances should increase as the orbit of the perturbing secondary is approached. However, in reality the width decreases due to the chaotic effect of nearby resonances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The scientific question addressed in this work is: what hides beneath first order kinetic constant k (s(-1)) measured for hybridization of a DNA target on a biosensor surface. Kinetics hybridization curves were established with a 27 MHz quartz microbalance (9 MHz, third harmonic) biosensor, constituted of a 20-base probe monolayer deposited on a gold covered quartz surface. Kinetics analysis, by a known two-step adsorption-hybridization mechanism, is well appropriate to fit properly hybridization kinetics curves, for complementary 20-base to 40-base targets over two concentration decades. It was found that the K-1 (M-1) adsorption constant, relevant to the first step, concerns an equilibrium between non hybridized targets and hybridized pre-complex and increases with DNA target length. It was established that k(2) (s(-1)), relevant to irreversible formation of a stable duplex, varies in an opposite way to K-1 with DNA target length. (C) 2012 Published by Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Analytical models for studying the dynamical behaviour of objects near interior, mean motion resonances are reviewed in the context of the planar, circular, restricted threebody problem. The predicted widths of the resonances are compared with the results of numerical integrations using Poincaré surfaces of section with a mass ratio of 10-3 (similar to the Jupiter-Sun case). It is shown that for very low eccentricities the phase space between the 2:1 and 3:2 resonances is predominantly regular, contrary to simple theoretical predictions based on overlapping resonance. A numerical study of the 'evolution' of the stable equilibrium point of the 3:2 resonance as a function of the Jacobi constant shows how apocentric libration at the 2:1 resonance arises; there is evidence of a similar mechanism being responsible for the centre of the 4:3 resonance evolving towards 3:2 apocentric libration. This effect is due to perturbations from other resonances and demonstrates that resonances cannot be considered in isolation. On theoretical grounds the maximum libration width of first-order resonances should increase as the orbit of the perturbing secondary is approached. However, in reality the width decreases due to the chaotic effect of nearby resonances.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the Korteweg-de Vries equation with a perturbation arising naturally in many physical situations. Although being asymptotically integrable, we show that the corresponding perturbed solitons do not have the usual scattering properties. Specifically, we show that there is a solution, correct up to O(ε), where ε is the perturbative parameter, consisting, at t→ -∞ of two superposed deformed solitons characterized by wave numbers k1 and k2 that give rise, for t→ +∞, to the same but phase-shifted superposed solitons plus a coupling term depending on k1, and k2. We also find the condition on the original equation for which this coupling vanishes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we propose the Double Sampling X̄ control chart for monitoring processes in which the observations follow a first order autoregressive model. We consider sampling intervals that are sufficiently long to meet the rational subgroup concept. The Double Sampling X̄ chart is substantially more efficient than the Shewhart chart and the Variable Sample Size chart. To study the properties of these charts we derived closed-form expressions for the average run length (ARL) taking into account the within-subgroup correlation. Numerical results show that this correlation has a significant impact on the chart properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional abduction imposes as a precondition the restriction that the background information may not derive the goal data. In first-order logic such precondition is, in general, undecidable. To avoid such problem, we present a first-order cut-based abduction method, which has KE-tableaux as its underlying inference system. This inference system allows for the automation of non-analytic proofs in a tableau setting, which permits a generalization of traditional abduction that avoids the undecidable precondition problem. After demonstrating the correctness of the method, we show how this method can be dynamically iterated in a process that leads to the construction of non-analytic first-order proofs and, in some terminating cases, to refutations as well.