990 resultados para quartic gauge coupling
Resumo:
Chk1 kinase coordinates cell cycle progression and preserves genome integrity. Here, we show that chemical or genetic ablation of human Chk1 triggered supraphysiological accumulation of the S phase-promoting Cdc25A phosphatase, prevented ionizing radiation (IR)-induced degradation of Cdc25A, and caused radioresistant DNA synthesis (RDS). The basal turnover of Cdc25A operating in unperturbed S phase required Chk1-dependent phosphorylation of serines 123, 178, 278, and 292. IR-induced acceleration of Cdc25A proteolysis correlated with increased phosphate incorporation into these residues generated by a combined action of Chk1 and Chk2 kinases. Finally, phosphorylation of Chk1 by ATM was required to fully accelerate the IR-induced degradation of Cdc25A. Our results provide evidence that the mammalian S phase checkpoint functions via amplification of physiologically operating, Chk1-dependent mechanisms.
Resumo:
In this paper we investigate the construction of state models for link invariants using representations of the braid group obtained from various gauge choices for a solution of the trigonometric Yang-Baxter equation. Our results show that it is possible to obtain invariants of regular isotopy (as defined by Kauffman) which may not be ambient isotopic. We illustrate our results with explicit computations using solutions of the trigonometric Yang-Baxter equation associated with the one-parameter family of minimal typical representations of the quantum superalgebra U-q,[gl(2/1)]. We have implemented MATHEMATICA code to evaluate the invariants for all prime knots up to 10 crossings.
Resumo:
Two experiments using a temporal occlusion paradigm (the first with expert and novice participants and the second with participants of intermediate skill) were conducted to examine the capability of tennis players to predict the direction of an opponent's service in situ. In both experiments two different response conditions, reflecting differing degrees of perception-action coupling, were employed. In a coupled condition players were required to make a movement-based response identical to that which they would use to hit a return of service in a game situation, whereas in an uncoupled condition a verbal prediction of service direction was required. Experiment 1 provided clear evidence of superior prediction accuracy under the coupled response condition when ball flight was available, plus some limited evidence to suggest that superior prediction accuracy under uncoupled response conditions might hold true if only advance (pre-contact) information was available. Experiment 2 showed the former finding to be a robust one, but was unable to reveal any support for the latter. Experiment 1 also revealed that expert superiority is more apparent for predictions made under natural (coupled) than uncoupled response-mode conditions. Collectively, these findings suggest that different perceptual processes may be in operation in anticipatory tasks which depend on skill level, the type of information presented, and degree of perception-action coupling inherent in the task requirements.
Spread-F/sporadic E coupling at Chung-Li, especially for postsunset periods of sunspot maximum years
Resumo:
The synthesis of helium in the early Universe depends on many input parameters, including the value of the gravitational coupling during the period when the nucleosynthesis takes place. We compute the primordial abundance of helium as function of the gravitational coupling, using a semi-analytical method, in order to track the influence of G in the primordial nucleosynthesis. To be specific, we construct a cosmological model with varying G, using the Brans-Dicke theory. The greater the value of G at nucleosynthesis period, the greater the predicted abundance of helium. Using the observational data for the abundance of primordial helium, constraints for the time variation of G are established.
Resumo:
A numeric model has been proposed to investigate the mechanical and electrical properties of a polymeric/carbon nanotube (CNT) composite material subjected to a deformation force. The reinforcing phase affects the behavior of the polymeric matrix and depends on the nanofiber aspect ratio and preferential orientation. The simulations show that the mechanical behavior of a computer generated material (CGM) depends on fiber length and initial orientation in the polymeric matrix. It is also shown how the conductivity of the polymer/CNT composite can be calculated for each time step of applied stress, effectively providing the ability to simulate and predict strain-dependent electrical behavior of CNT nanocomposites.
Resumo:
We present the supersymmetric standard model three-loop beta-functions for gauge and Yukawa couplings and consider the effect of three-loop corrections on the standard running coupling analyses.
Resumo:
This paper is devoted to the synchronization of a dynamical system defined by two different coupling versions of two identical piecewise linear bimodal maps. We consider both local and global studies, using different tools as natural transversal Lyapunov exponent, Lyapunov functions, eigenvalues and eigenvectors and numerical simulations. We obtain theoretical results for the existence of synchronization on coupling parameter range. We characterize the synchronization manifold as an attractor and measure the synchronization speed. In one coupling version, we give a necessary and sufficient condition for the synchronization. We study the basins of synchronization and show that, depending upon the type of coupling, they can have very different shapes and are not necessarily constituted by the whole phase space; in some cases, they can be riddled.
Resumo:
Agência Financiadora: Fundação para a Ciência e a Tecnologia (FCT) - PEst-OE/FIS/UI0777/2013; CERN/FP/123580/2011; PTDC/FIS-NUC/0548/2012
Resumo:
Wind resource evaluation in two sites located in Portugal was performed using the mesoscale modelling system Weather Research and Forecasting (WRF) and the wind resource analysis tool commonly used within the wind power industry, the Wind Atlas Analysis and Application Program (WAsP) microscale model. Wind measurement campaigns were conducted in the selected sites, allowing for a comparison between in situ measurements and simulated wind, in terms of flow characteristics and energy yields estimates. Three different methodologies were tested, aiming to provide an overview of the benefits and limitations of these methodologies for wind resource estimation. In the first methodology the mesoscale model acts like “virtual” wind measuring stations, where wind data was computed by WRF for both sites and inserted directly as input in WAsP. In the second approach, the same procedure was followed but here the terrain influences induced by the mesoscale model low resolution terrain data were removed from the simulated wind data. In the third methodology, the simulated wind data is extracted at the top of the planetary boundary layer height for both sites, aiming to assess if the use of geostrophic winds (which, by definition, are not influenced by the local terrain) can bring any improvement in the models performance. The obtained results for the abovementioned methodologies were compared with those resulting from in situ measurements, in terms of mean wind speed, Weibull probability density function parameters and production estimates, considering the installation of one wind turbine in each site. Results showed that the second tested approach is the one that produces values closest to the measured ones, and fairly acceptable deviations were found using this coupling technique in terms of estimated annual production. However, mesoscale output should not be used directly in wind farm sitting projects, mainly due to the mesoscale model terrain data poor resolution. Instead, the use of mesoscale output in microscale models should be seen as a valid alternative to in situ data mainly for preliminary wind resource assessments, although the application of mesoscale and microscale coupling in areas with complex topography should be done with extreme caution.
Resumo:
A procedure for coupling mesoscale and CFD codes is presented, enabling the inclusion of realistic stratification flow regimes and boundary conditions in CFD simulations of relevance to site and resource assessment studies in complex terrain. Two distinct techniques are derived: (i) in the first one, boundary conditions are extracted from mesoscale results to produce time-varying CFD solutions; (ii) in the second case, a statistical treatment of mesoscale data leads to steady-state flow boundary conditions believed to be more representative than the idealised profiles which are current industry practice. Results are compared with measured data and traditional CFD approaches.
Resumo:
It has been pointed out recently that current experiments still allow for a two Higgs doublet model where the hbb¯ coupling (kDmb/v) is negative; a sign opposite to that of the Standard Model. Due to the importance of delayed decoupling in the hH+H− coupling, h→γγ improved measurements will have a strong impact on this issue. For the same reason, measurements or even bounds on h→Zγ are potentially interesting. In this article, we revisit this problem, highlighting the crucial importance of h→VV, which can be understood with simple arguments. We show that the impacts on kD<0 models of both h→bb¯ and h→τ+τ− are very sensitive to input values for the gluon fusion production mechanism; in contrast, h→γγ and h→Zγ are not. We also inquire if the search for h→Zγ and its interplay with h→γγ will impact the sign of the hbb¯ coupling. Finally, we study these issues in the context of the flipped two Higgs doublet model.
Resumo:
We analyse the possibility that, in two Higgs doublet models, one or more of the Higgs couplings to fermions or to gauge bosons change sign, relative to the respective Higgs Standard Model couplings. Possible sign changes in the coupling of a neutral scalar to charged ones are also discussed. These wrong signs can have important physical consequences, manifesting themselves in Higgs production via gluon fusion or Higgs decay into two gluons or into two photons. We consider all possible wrong sign scenarios, and also the symmetric limit, in all possible Yukawa implementations of the two Higgs doublet model, in two different possibilities: the observed Higgs boson is the lightest CP-even scalar, or the heaviest one. We also analyse thoroughly the impact of the currently available LHC data on such scenarios. With all 8 TeV data analysed, all wrong sign scenarios are allowed in all Yukawa types, even at the 1 sigma level. However, we will show that B-physics constraints are crucial in excluding the possibility of wrong sign scenarios in the case where tan beta is below 1. We will also discuss the future prospects for probing the wrong sign scenarios at the next LHC run. Finally we will present a scenario where the alignment limit could be excluded due to non-decoupling in the case where the heavy CP-even Higgs is the one discovered at the LHC.
Resumo:
The present work aims to achieve and further develop a hydrogeomechanical approach in Caldas da Cavaca hydromineral system rock mass (Aguiar da Beira, NW Portugal), and contribute to a better understanding of the hydrogeological conceptual site model. A collection of several data, namely geology, hydrogeology, rock and soil geotechnics, borehole hydraulics and hydrogeomechanics, was retrieved from three rock slopes (Lagoa, Amores and Cancela). To accomplish a comprehensive analysis and rock engineering conceptualisation of the site, a multi‐technical approach were used, such as, field and laboratory techniques, hydrogeotechnical mapping, hydrogeomechanical zoning and hydrogeomechanical scheme classifications and indexes. In addition, a hydrogeomechanical data analysis and assessment, such as Hydro‐Potential (HP)‐Value technique, JW Joint Water Reduction index, Hydraulic Classification (HC) System were applied on rock slopes. The hydrogeomechanical zone HGMZ 1 of Lagoa slope achieved higher hydraulic conductivities with poorer rock mass quality results, followed by the hydrogeomechanical zone HGMZ 2 of Lagoa slope, with poor to fair rock mass quality and lower hydraulic parameters. In addition, Amores slope had a fair to good rock mass quality and the lowest hydraulic conductivity. The hydrogeomechanical zone HGMZ 3 of Lagoa slope, and the hydrogeomechanical zones HGMZ 1 and HGMZ 2 of Cancela slope had a fair to poor rock mass quality but were completely dry. Geographical Information Systems (GIS) mapping technologies was used in overall hydrogeological and hydrogeomechanical data integration in order to improve the hydrogeological conceptual site model.
Resumo:
Fundação para a Ciência e a Tecnologia - PTDC/AGR-AAM/101643/2008 NanoDC ; SFRH/BD/76070/2011 ; FP7-PEOPLE-IRSES-2010-269289- ELECTROACROSS