927 resultados para protox inhibitor
Resumo:
Leukocyte Elastase Inhibitor (LEI, also called serpin B1) is a protein involved in apoptosis among other physiological processes. We have previously shown that upon cleavage by its cognate protease, LEI is transformed into L-DNase II, a protein with a pro-apoptotic activity. The caspase independent apoptotic pathway, in which L-DNase II is the final effector, interacts with other pro-apoptotic molecules like Poly-ADP-Ribose polymerase (PARP) or Apoptosis Inducing Factor (AIF). The screening of LEI/L-DNase II interactions showed a possible interaction with several members of the BCL-2 family of proteins which are known to have a central role in the regulation of caspase dependent cell death. In this study, we investigated the regulation of LEI/L-DNase II pathway by two members of this family of proteins: BAX and BCL-2, which have opposite effects on cell survival. We show that, in both BHK and HeLa cells, LEI/L-DNase II can interact with BCL-2 and BAX in apoptotic and non-apoptotic conditions. These proteins which are usually thought to be anti-apoptotic and pro-apoptotic respectively, both inhibit the L-DNase II pro-apoptotic activity. These results give further insight in the regulation of caspase-independent pathways and highlight the involvement of the intracellular environment of a given protein in the determinism of its function. They also add a link between caspase-dependent and independent pathways of apoptosis.
Resumo:
Schistosomiasis is an endemic parasite disease and praziquantel is the only drug currently in use to control this disease. Experimental and epidemiological evidence strongly suggests that Microtus fortis( Mf) is a naturally resistant vertebrate host of Schistosoma japonicum. In the present study, we found that Mfserum albumin ( Mf-albumin) and the conditioned medium of pcDNA3.1- Mf-albumin caused 46.2% and 38.7% schistosomula death rates in 96 h, respectively, which were significantly higher than that of the negative control (p < 0.05). We also found that mice injected with Mf-albumin had a 43.5% reduction in worm burden and a 48.1% reduction in liver eggs per gram (p < 0.05) in comparison to the control animals. To characterise the mechanisms involved in clearance, schistosomula were incubated with fluorescein isothiocyanate-labelled Mf-albumin and fluorescent enrichment effects were found in the gut lumen of schistosomula after 48 h of incubation. Next, digestive tract excretions from schistosomula were collected and the sensitivity of Mf-albumin to digestive tract excretions was evaluated. The results indicated that schistosomula digestive tract excretions showed indigestibility of Mf-albumin. The death of schistosomula could be partially attributed to the lack of digestion of Mf-albumin by digestive tract excretions during the development of the schistosomula stage. Therefore, these data indicate the potential of Mf-albumin as one of the major selective forces for schistosomiasis.
Resumo:
Real-time PCR is a widely used tool for the diagnosis of many infectious diseases. However, little information exists about the influences of the different factors involved in PCR on the amplification efficiency. The aim of this study was to analyze the effect of boiling as the DNA preparation method on the efficiency of the amplification process of real-time PCR for the diagnosis of human brucellosis with serum samples. Serum samples from 10 brucellosis patients were analyzed by a SYBR green I LightCycler-based real-time PCR and by using boiling to obtain the DNA. DNA prepared by boiling lysis of the bacteria isolated from serum did not prevent the presence of inhibitors, such as immunoglobulin G (IgG), which were extracted with the template DNA. To identify and confirm the presence of IgG, serum was precipitated to separate and concentrate the IgG and was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blotting. The use of serum volumes above 0.6 ml completely inhibited the amplification process. The inhibitory effect of IgG in serum samples was not concentration dependent, and it could be eliminated by diluting the samples 1/10 and 1/20 in water. Despite the lack of the complete elimination of the IgG from the template DNA, boiling does not require any special equipment and it provides a rapid, reproducible, and cost-effective method for the preparation of DNA from serum samples for the diagnosis of brucellosis.
Resumo:
A sequential treatment design was chosen in this trial to ensure complete resistance to single-agent non-steroidal aromatase inhibitor (AI) and trastuzumab both given as monotherapy before receiving the combination of a non-steroidal AI and trastuzumab. Key eligibility criteria included postmenopausal patients with advanced, measurable, human epidermal growth factor receptor-2 (HER-2)-positive disease (assessed by FISH, ratio (≥2)), hormone receptor (HR)-positive disease, and progression on prior treatment with a non-steroidal AI, e.g. letrozole or anastrozole, either in the adjuvant or in the advanced setting. Patients received standard dose trastuzumab monotherapy in step 1 and upon disease progression continued trastuzumab in combination with letrozole in step 2. The primary endpoint was clinical benefit rate (CBR) in step 2. Totally, 13 patients were enrolled. In step 1, six patients (46%) achieved CBR. Median time to progression (TTP) was 161 days (95% confidence interval (CI): 82-281). In step 2, CBR was observed in eight out of the 11 evaluable patients (73%), including one patient with partial response. Median TTP for all the 11 patients was 188 days (95% CI: 77-not reached). Results of this proof-of-concept trial suggest that complete resistance to both AI and trastuzumab can be overcome in a proportion of patients by combined treatment of AI and trastuzumab, as all patients served as their own control. Our results appear promising for a new treatment strategy that offers a chemotherapy-free option for at least a subset of patients with HR-positive, HER-2-positive breast cancer over a clinically relevant time period.
Resumo:
BACKGROUND: The efficacy of angiotensin-converting enzyme (ACE) inhibitors in decreasing blood pressure in African patients is controversial. OBJECTIVE: We examined the ambulatory blood pressure (ABP) response to a diuretic and an ACE inhibitor in hypertensive patients of East African descent and evaluated the individual characteristics that determined treatment efficacy. DESIGN: A single-blind randomized AB/BA crossover design. SETTING: Hypertensive families of East African descent from the general population in the Seychelles. PARTICIPANTS: Fifty-two (29 men and 23 women) out of 62 eligible hypertensive patients were included.Main outcome measures ABP response to 20 mg lisinopril (LIS) daily and 25 mg hydrochlorothiazide (HCT) daily given for a 4-week period.Results The daytime systolic/diastolic ABP response to HCT was 4.9 [95% confidence interval (CI) 1.2-8.6]/3.6 (1.0-6.2) mmHg for men and 12.9 (9.2-16.6)/6.3 (3.7-8.8) mmHg for women. With LIS the response was 18.8 (15.0-22.5)/14.6 (12.0-17.1) mmHg for men and 12.4 (8.7-16.2)/7.7 (5.1-10.2) mmHg for women. The night-time systolic/diastolic response to HCT was 5.0 (0.6-9.4)/2.7 [(-0.4)-5.7] mmHg for men and 11.5 (7.1-16.0)/5.7 (2.6-8.8) mmHg for women, and to LIS was 18.7 (14.2-22.1)/15.4 (12.4-18.5) mmHg for men and 3.5 [(-1.0)-7.9]/2.3 [(-0.8)-5.4] mmHg for women. Linear regression analyses showed that gender is an independent predictor of the ABP responses to HCT and to LIS. CONCLUSIONS: Hypertensive patients of African descent responded better to LIS than to HCT. Men responded better to LIS than to HCT and women responded similarly to both drugs.
Resumo:
Arenaviruses merit interest as clinically important human pathogens and include several causative agents, chiefly Lassa virus (LASV), of hemorrhagic fever disease in humans. There are no licensed LASV vaccines, and current antiarenavirus therapy is limited to the use of ribavirin, which is only partially effective and is associated with significant side effects. The arenavirus glycoprotein (GP) precursor GPC is processed by the cellular site 1 protease (S1P) to generate the peripheral virion attachment protein GP1 and the fusion-active transmembrane protein GP2, which is critical for production of infectious progeny and virus propagation. Therefore, S1P-mediated processing of arenavirus GPC is a promising target for therapeutic intervention. To this end, we have evaluated the antiarenaviral activity of PF-429242, a recently described small-molecule inhibitor of S1P. PF-429242 efficiently prevented the processing of GPC from the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) and LASV, which correlated with the compound's potent antiviral activity against LCMV and LASV in cultured cells. In contrast, a recombinant LCMV expressing a GPC whose processing into GP1 and GP2 was mediated by furin, instead of S1P, was highly resistant to PF-429242 treatment. PF-429242 did not affect virus RNA replication or budding but had a modest effect on virus cell entry, indicating that the antiarenaviral activity of PF-429242 was mostly related to its ability to inhibit S1P-mediated processing of arenavirus GPC. Our findings support the feasibility of using small-molecule inhibitors of S1P-mediated processing of arenavirus GPC as a novel antiviral strategy.
Resumo:
In order to identify new compounds to treat Chagas disease during the acute phase with higher activity and lower toxicity than the reference drug benznidazole (Bz), two hydroxyphthalazine derivative compounds were prepared and their trypanocidal effects against Trypanosoma cruzi were evaluated by light microscopy through the determination of IC50 values. Cytotoxicity was determined by flow cytometry assays against Vero cells. In vivo assays were performed in BALB/c mice, in which the parasitemia levels were quantified by fresh blood examination; the assignment of a cure was determined by reactivation of blood parasitemia levels after immunosuppression. The mechanism of action was elucidated at metabolic and ultra-structural levels, by (1)H NMR and TEM studies. Finally, as these compounds are potentially capable of causing oxidative damage in the parasites, the study was completed, by assessing their activity as potential iron superoxide dismutase (Fe-SOD) inhibitors. High-selectivity indices observed in vitro were the basis of promoting one of the tested compounds to in vivo assays. The tests on the murine model for the acute phase of Chagas disease showed better parasitemia inhibition values than those found for Bz. Compound 2 induced a remarkable decrease in the reactivation of parasitemia after immunosuppression. Compound 2 turned out to be a great inhibitor of Fe-SOD. The high antiparasitic activity and low toxicity together with the modest costs for the starting materials render this compound an appropriate molecule for the development of an affordable anti-Chagas agent.
Resumo:
Abstract Stroke or cerebrovascular accident, whose great majority is of ischemic nature, is the third leading cause of mortality and long lasting disability in industrialised countries. Resulting from the loss of blood supply to the brain depriving cerebral tissues of oxygen and glucose, it induces irreversible neuronal damages. Despite the large amount of research carried out into the causes and pathogenic features of cerebral ischemia the progress toward effective treatments has been poor. Apart the clot-busting drug tissue-type plasminogen activator (tPA) as effective therapy for acute stroke (reperfusion by thrombolysis) but limited to a low percentage of patients, there are currently no other approved medical treatments. The need for new therapy strategies is therefore imperative. Neuronal death in cerebral ischemia is among others due to excitotoxic mechanisms very early after stroke onset. One of the main involved molecular pathways leading to excitotoxic cell death is the c-Jun NH2-terminal kinase (JNK) pathway. Several studies have already shown the efficacy of a neuroprotective agent of a new type, a dextrogyre peptide synthesized in the retro inverso form (XG102, formerly D-JNKI1), which is protease-resistant and cell-penetrating and that selectively and strongly blocks the access of JNK to many of its targets. A powerful protection was observed with this compound in several models of ischemia (Borsello et al. 2003;Hirt et al. 2004). This chimeric compound, made up of a 10 amino acid TAT transporter sequence followed by a 20 amino acids JNK binding domain (JBD) sequence from JNK inhibitor protein (JIP) molecule, induced both a major reduction in lesion size and improved functional outcome. Moreover it presents a wide therapeutic window. XG-102 has proved its powerful efficacy in an occlusion model of middle cerebral artery in mice with intracérebroventricular (i.c.v.) injection but in order to be able to consider the development of this drug for human ischemic stroke it was therefore necessary to determine the feasibility of its systemic administration. The studies being the subject of this thesis made it possible to show a successful neuroprotection with XG-102 administered systemically after transient mouse middle cerebral artery occlusion (MCAo). Moreover our data. provided information about the feasibility to combine XG-102 with tPA without detrimental action on cell survival. By combining the benefits from a reperfusion treatment with the effects of a neuroprotective compound, it would represent the advantage of bringing better chances to protect the cerebral tissue. Résumé L'attaque cérébrale ou accident vasculaire cérébral, dont la grande majorité est de nature ischémique, constitue la troisième cause de mortalité et d'infirmité dans les pays industrialisés. Résultant de la perte d'approvisionnement de sang au cerveau privant les tissus cérébraux d'oxygène et de glucose, elle induit des dommages neuronaux irréversibles. En dépit du nombre élevé de recherches effectuées pour caractériser les mécanismes pathogènes de l'ischémie. cérébrale, les progrès vers des traitements efficaces restent pauvres. Excepté l'activateur tissulaire du plasminogène (tPA) dont le rôle est de désagréger les caillots sanguins et employé comme thérapie efficace contre l'attaque cérébrale aiguë (reperfusion par thrombolyse) mais limité à un faible pourcentage de patients, il n'y a actuellement aucun autre traitement médical approuvé. Le besoin de nouvelles stratégies thérapeutiques est par conséquent impératif. La mort neuronale dans l'ischémie cérébrale est entre autres due à des mécanismes excitotoxiques survenant rapidement après le début de l'attaque cérébrale. Une des principales voies moléculaires impliquée conduisant à la mort excitotoxique des cellules est la voie de la c-Jun NH2terminal kinase (JNK). Plusieurs études ont déjà montré l'efficacité d'un agent neuroprotecteur d'un nouveau type, un peptide dextrogyre synthétisé sous la forme retro inverso (XG-102, précédemment D-JNKI1) résistant aux protéases, capable de pénétrer dans les cellules et de bloquer sélectivement et fortement l'accès de JNK à plusieurs de ses cibles. Une puissante protection a été observée avec ce composé dans plusieurs modèles d'ischémie (Borsello et al. 2003;Hirt et al. 2004). Ce composé chimérique, construit à partir d'une séquence TAT de 10 acides aminés suivie par une séquence de 20 acides aminés d'un domaine liant JNK (JBD) issu de la molécule JNK protéine inhibitrice. (JIP), induit à la fois une réduction importante de la taille de lésion et un comportement fonctionnel amélioré. De plus il présente une fenêtre thérapeutique étendue. XG-102 a prouvé sa puissante efficacité dans un modèle d'occlusion de l'artère cérébrale moyenne chez la souris avec injection intracerebroventriculaire (i.c.v.) mais afin de pouvoir envisager le développement de ce composé pour l'attaque cérébrale chez l'homme, il était donc nécessaire de déterminer la faisabilité de son administration systémique. Les études faisant l'objet de cette thèse ont permis de montrer une neuroprotection importante avec XG-102 administré de façon systémique après l'occlusion transitoire de l'artère cérébrale moyenne chez la souris (MCAo). De plus nos données ont fourni des informations quant à la faisabilité de combiner XG-102 et tPA, démontrant une protection efficace par XG-102 malgré l'action nuisible du tPA sur la survie des cellules. En combinant les bénéfices de la reperfusion avec les effets d'un composé neurooprotecteur, cela représenterait l'avantage d'apporter des meilleures chances de protéger le tissu cérébral.
Resumo:
This study was conducted to identify enzyme systems eventually catalysing a local cerebral metabolism of citalopram, a widely used antidepressant of the selective serotonin reuptake inhibitor type. The metabolism of citalopram, of its enantiomers and demethylated metabolites was investigated in rat brain microsomes and in rat and human brain mitochondria. No cytochrome P-450 mediated transformation was observed in rat brain. By analysing H2O2 formation, monoamine oxidase A activity in rat brain mitochondria could be measured. In rat whole brain and in human frontal cortex, putamen, cerebellum and white matter of five brains monoamine oxidase activity was determined by the stereoselective measurement of the production of citalopram propionate. All substrates were metabolised by both forms of MAO, except in rat brain, where monoamine oxidase B activity could not be detected. Apparent Km and Vmax of S-citalopram biotransformation in human frontal cortex by monoamine oxidase B were found to be 266 microM and 6.0 pmol min(-1) mg(-1) protein and by monoamine oxidase A 856 microM and 6.4 pmol min(-1) mg(-1) protein, respectively. These Km values are in the same range as those for serotonin and dopamine metabolism by monoamine oxidases. Thus, the biotransformation of citalopram in the rat and human brain occurs mainly through monoamine oxidases and not, as in the liver, through cytochrome P-450.
Resumo:
Both angiotensin converting enzyme (ACE) inhibitors and potassium-sparing diuretics tend to increase serum potassium levels. This retrospective study was undertaken to assess whether these two types of agents can nevertheless be combined safely. Twelve hypertensive patients were treated for 1-70 months (mean = 17) with an ACE inhibitor together with a potassium-sparing diuretic (spironolactone, n = 10; amiloride, n = 2). In addition, eight patients also took a thiazide or a loop diuretic. Nine patients had a normal and three a slightly impaired renal function. No clinically relevant hyperkalemia was observed during the course of the study. These data suggest that it is not impossible to combine an ACE inhibitor with a potassium-sparing diuretic, as long as renal function is normal and serum potassium concentration is monitored closely.
Resumo:
Although their contribution remains unclear, lipids may facilitate noncanonical routes of protein internalization into cells such as those used by cell-penetrating proteins. We show that protein C inhibitor (PCI), a serine protease inhibitor (serpin), rapidly transverses the plasma membrane, which persists at low temperatures and enables its nuclear targeting in vitro and in vivo. Cell membrane translocation of PCI necessarily requires phosphatidylethanolamine (PE). In parallel, PCI acts as a lipid transferase for PE. The internalized serpin promotes phagocytosis of bacteria, thus suggesting a function in host defense. Membrane insertion of PCI depends on the conical shape of PE and is associated with the formation of restricted aqueous compartments within the membrane. Gain- and loss-of-function mutations indicate that the transmembrane passage of PCI requires a branched cavity between its helices H and D, which, according to docking studies, precisely accommodates PE. Our findings show that its specific shape enables cell surface PE to drive plasma membrane translocation of cell-penetrating PCI.
Resumo:
OBJECTIVE: To investigate the hemodynamic effects of L-canavanine (an inhibitor of inducible, but not of constitutive, nitric oxide synthase) in endotoxic shock. DESIGN: Controlled, randomized, experimental study. SETTING: Animal laboratory. SUBJECTS: Wistar rats. INTERVENTIONS: Rats were anesthetized with pentobarbital, and hemodynamically monitored. One hour after an intravenous challenge with 5 mg/kg of Escherichia coli endotoxin, the rats were randomized to receive a continuous infusion of either L-canavanine (20 mg/kg/hr; n = 8) or vehicle only (isotonic saline, n = 11). In all animals, the infusion was given over 5 hrs at a rate of 2 mL/kg/hr. These experiments were repeated in additional rats challenged with isotonic saline instead of endotoxin (sham experiments). MEASUREMENTS AND MAIN RESULTS: Arterial blood pressure, heart rate, thermodilution cardiac output, central venous pressure, mean systemic filling pressure, urine output, arterial blood gases, blood lactate concentration, and hematocrit were measured. In sham experiments, hemodynamic stability was maintained throughout and L-canavanine had no detectable effect. Animals challenged with endotoxin and not treated with L-canavanine developed progressive hypotension and low cardiac output. After 6 hrs of endotoxemia, both central venous pressure and mean systemic filling pressure were significantly below their baseline values, indicating relative hypovolemia as the main determinant of reduced cardiac output. In endotoxemic animals treated with L-canavanine, hypotension was less marked, while cardiac output, central venous pressure, and mean systemic filling pressure were maintained throughout the experiment. L-canavanine had no effect on the time-course of hematocrit. L-canavanine significantly increased urine output and reduced the severity of lactic acidosis. CONCLUSIONS: Six hours after an endotoxin challenge in rats, low cardiac output develops, which appears to be primarily related to relative hypovolemia. L-canavanine, a selective inhibitor of the inducible nitric oxide synthase, increases the mean systemic filling pressure, thereby improving venous return, under these conditions.
Resumo:
Maintenance of corneal transparency is crucial for vision and depends mainly on the endothelium, a non-proliferative monolayer of cells covering the inner part of the cornea. When endothelial cell density falls below a critical threshold, the barrier and "pump" functions of the endothelium are compromised which results in corneal oedema and loss of visual acuity. The conventional treatment for such severe disorder is corneal graft. Unfortunately, there is a worldwide shortage of donor corneas, necessitating amelioration of tissue survival and storage after harvesting. Recently it was reported that the ROCK inhibitor Y-27632 promotes adhesion, inhibits apoptosis, increases the number of proliferating monkey corneal endothelial cells in vitro and enhance corneal endothelial wound healing both in vitro and in vivo in animal models. Using organ culture human cornea (N = 34), the effect of ROCK inhibitor was evaluated in vitro and ex vivo. Toxicity, corneal endothelial cell density, cell proliferation, apoptosis, cell morphometry, adhesion and wound healing process were evaluated by live/dead assay standard cell counting method, EdU labelling, Ki67, Caspase3, Zo-1 and Actin immunostaining. We demonstrated for the first time in human corneal endothelial cells ex vivo and in vitro, that ROCK inhibitor did not induce any toxicity effect and did not alter cell viability. ROCK inhibitor treatment did not induce human corneal endothelial cells proliferation. However, ROCK inhibitor significantly enhanced adhesion and wound healing. The present study shows that the selective ROCK inhibitor Y-27632 has no effect on human corneal endothelial cells proliferative capacities, but alters cellular behaviours. It induces changes in cell shape, increases cell adhesion and enhances wound healing ex vivo and in vitro. Its absence of toxicity, as demonstrated herein, is relevant for its use in human therapy.
Resumo:
Background: It has been previously demonstrated that short-fiber poly-N-acetyl-glucosamine (sNAG) nanofibers specifically interact with platelets, are hemostatic, and stimulate diabetic wound healing by activating angiogenesis, cell proliferation, and reepithelialization. Platelets play a significant physiologic role in wound healing. The influence of altered platelet function by treatment with the ADP inhibitor Clopidogrel (CL) on wound healing and the ability of sNAG to repair wounds in diabetic mice treated with CL were studied.Methods: Dorsal 1 cm2 skin wounds were excised on genetically diabetic 8-week to 12-week-old, Lep/r-db/db male mice, and wound healing kinetics were determined. Microscopic analysis was performed for angiogenesis (PECAM-1) and cell proliferation (Ki67). Mice were either treated with CL (P2Y12 ADP receptor antagonist, CL) or saline solution (NT). CL wounds were also treated with either a single application of topical sNAG (CL-sNAG) or were left untreated (CL-NT).Results: CL treatment did not alter wound healing kinetics, while sNAG induced faster wound closure in CL-treated mice compared with controls. CL treatment of diabetic mice caused an augmentation of cell proliferation and reduced angiogenesis compared with nontreated wounds. However, sNAG reversed the effects of CL on angiogenesis and partially reversed the effect on cell proliferation in the wound beds. The sNAG-treated wounds in CL-treated mice showed higher levels of cell proliferation and not did inhibit angiogenesis.Conclusions: CL treatment of diabetic mice decreased angiogenesis and increased cell proliferation in wounds but did not influence macroscopic wound healing kinetics. sNAG treatment did not inhibit angiogenesis in CL-treated mice and induced faster wound closure; sNAG technology is a promising strategy to facilitate the healing of complex bleeding wounds in CL-treated diabetic patients.