995 resultados para protein deposition
Resumo:
Data suggest that for TG2 to be secreted, an intact N-terminal FN binding site (for which TG2 has high affinity) is required, however interaction of TG2 with its high affinity binding partners presents both in the intracellular and extracellular space as well as with specific cell surface receptors may also be involved in this process. Using a site-directed mutagenesis approach, the effects of specific mutations of TG2 on its translocation to the cell surface and secretion into the ECM have been investigated. Mutations include those affecting FN binding (FN1), HSPGs binding (HS1, HS2) GTP/GDP binding site (GTP1, 2) as well as N-terminal and C-terminal domains (TG2 deletion mutants N, and C). By performing transglutaminase activity assays, cell surface protein biotinylation and verifying distribution of TG2 mutants in the ECM we demonstrated that one of the potential heparan sulfate binding site mutants (HS2 mutant) is secreted at the cell surface in a much reduced manner and is less deposited into the ECM than the HS1 mutant. The HS2 mutant showed a low affinity for binding to a heparin sepharose column demonstrating this mutation site may be a potential heparan binding site of TG2. Analogous peptides to this site were shown to have some efficiency in the inhibition of the binding of the FN-TG2 complex to cell surface heparan sulfates in a cell adhesion assay indicating the peptide to be representative of the novel heparin binding site within TG2. The GTP binding site mutants GTP1 and GTP2 exhibited low specific activity however, GTP2 showed more secretion to the cell surface in comparison to GTP1. The FN1 binding mutant did not greatly affect TG2 activity nor did it alter TG2 secretion at the cell surface and deposition into the ECM indicating that fibronectin binding at this site on the enzyme is not an important factor. Interestingly an intact N-terminus (?1-15) appeared to be essential for enzyme externalisation. Removal of the first 15 amino acids (N-terminal mutant) abolished TG2 secretion to the cell surface as well as deposition into the ECM. In addition it reduced the enzymes affinity for binding to heparin. In contrast, deletion of the C-terminal TG2 domain (?594-687) increased enzyme secretion to the cell surface. Consistent with the data presented in this thesis we speculate that TG2 must fulfill two requirements to be successfully secreted from cells. The findings indicate that the closed conformation of the enzyme as well as intact N-terminal tail and a novel HS binding site within the TG2 molecule are key elements for the enzyme’s localisation at the cell surface and its deposition into the extracellular matrix. The importance of understanding the interactions between TG2, heparan sulfates and other TG2 binding partners at the cell surface could have an impact on the design of novel strategies for enzyme inhibition which could be important in the control of extracellular TG2 related diseases.
Resumo:
Tissue transglutaminase (TG2) is a multifunctional Ca2+ activated protein crosslinking enzyme secreted into the extracellular matrix (ECM), where it is involved in wound healing and scarring, tissue fibrosis, celiac disease and metastatic cancer. Extracellular TG2 can also facilitate cell adhesion important in wound healing through a non-transamidating mechanism via its association with fibronectin (FN), heparan sulphates (HS) and integrins. Regulating the mechanism how TG2 is translocated into the ECM therefore provides a strategy for modulating these physiological and pathological functions of the enzyme. Here, through molecular modelling and mutagenesis we have identified the HS binding site of TG2 202KFLKNAGRDCSRRSSPVYVGR222. We demonstrate the requirement of this binding site for translocation of TG2 into the ECM through a mechanism involving cell surface shedding of HS. By synthesizing a peptide NPKFLKNAGRDCSRRSS corresponding to the HS binding site within TG2, we also demonstrate how this mimicking peptide can in isolation compensate the RGD-induced loss of cell adhesion on FN via binding to syndecan-4, leading to activation of PKCa, pFAK-397 and ERK1/2 and the subsequent formation of focal adhesions and actin cytoskeleton organization. A novel regulatory mechanism for TG2 translocation into the extracellular compartment that depends upon TG2 conformation and the binding of HS is proposed.
Resumo:
The numerical density of senile plaques (SP) and neurofibrillary tangles (NFT) as revealed by the Glees silver method was compared with SP and NFT revealed by the Gallyas method and with amyloid (A4) deposits in immunostained sections in 6 elderly cases of Alzheimer's disease. The density of NFT was generally greater and A4 lower in tissue from hippocampus compared with the neocortex suggesting that A4 deposition was less important than the degree of paired helical filament (PHF) related damage in the hippocampus. The density of Glees SP was positively correlated Gallyas SP weakly correlated with A4 deposit number. A stepwise multiple regression analysis which included A4 deposit and Gallyas SP density and accounted for 54% of the variation in Glees SP density. Hence, different populations of SP were revealed by the different staining methods. The results suggested that the Glees method may stain a population of SP in a region of cortex where both amyloid deposition and neurofibrillary changes have occurred.
Resumo:
The density of diffuse, primitive, classic and compact βamyloid (Aβ deposits was estimated in regions of the medial temporal lobe (MTL) in 15 cases of late-onset sporadic Alzheimer's disease (AD) and 12 cases of Down's syndrome (DS). A similar pattern of Aβ deposition was observed in the MTL in the AD and DS cases with a reduced density of deposits in the hippocampus compared with the adjacent cortical regions. Total Aβ deposit density was greater in DS than in AD in all brain regions examined. This could be attributable to overexpression of the amyloid precursor protein gene. The ratio of the primitive to the diffuse Aβ deposits was greater in DS than in AD which suggests that the formation of mature amyloid deposits is enhanced in DS. The diffuse deposits exhibited a parabolic and the primitive deposits an inverted parabolic response with age in the DS cases. This suggests either that the diffuse and primitive deposits are sequentially related or that there are alternate pathways of Aβ deposition. © 1995 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted.
Resumo:
Deposition of insoluble prion protein (PrP) in the brain in the form of protein aggregates or deposits is characteristic of the ‘transmissible spongiform encephalopathies’ (TSEs). Understanding the growth and development of PrP aggregates is important both in attempting to elucidate the pathogenesis of prion disease and in the development of treatments designed to inhibit the spread of prion pathology within the brain. Aggregation and disaggregation of proteins and the diffusion of substances into the developing aggregates (surface diffusion) are important factors in the development of protein deposits. Mathematical models suggest that if either aggregation/disaggregation or surface diffusion is the predominant factor, then the size frequency distribution of the resulting protein aggregates will be described by either a power-law or a log-normal model respectively. This study tested this hypothesis for two different populations of PrP deposit, viz., the diffuse and florid-type PrP deposits characteristic of patients with variant Creutzfeldt-Jakob disease (vCJD). The size distributions of the florid and diffuse deposits were fitted by a power-law function in 100% and 42% of brain areas studied respectively. By contrast, the size distributions of both types of aggregate deviated significantly from a log-normal model in all areas. Hence, protein aggregation and disaggregation may be the predominant factor in the development of the florid deposits. A more complex combination of factors appears to be involved in the pathogenesis of the diffuse deposits. These results may be useful in the design of treatments to inhibit the development of PrP aggregates in vCJD.
Resumo:
The work presents a new method that combines plasma etching with extrinsic techniques to simultaneously measure matrix and surface protein and lipid deposits. The acronym for this technique is PEEMS - Plasma Etching and Emission Monitoring System. Previous work has identified the presence of proteinaceous and lipoidal deposition on the surface of contact lenses and highlighted the probability that penetration of these spoilants will occur. This technique developed here allows unambiguous identification of the depth of penetration of spoilants to be made for various material types. It is for this reason that the technique has been employed in this thesis. The technique is applied as a 'molecular' scalpel, removing known amounts of material from the target. In this case from both the anterior .and posterior surfaces of a 'soft' contact lens. The residual material is then characterised by other analytical techniques such as UV/visible .and fluorescence spectroscopy. Several studies have be.en carried out for both in vivo and in vitro spoilt materials. The analysis and identification of absorbed protein and lipid of the substrate revealed the importance of many factors in the absorption and adsorption process. The effect of the material structure, protein nature (in terms of size, shape and charge) and environment conditions were examined in order to determine the relative uptake of tear proteins. The studies were extended to real cases in order to study the. patient dependent factors and lipoidal penetration.
Resumo:
Currently over 50 million people worldwide wear contact lenses, of which over 75% wear hydrogel lenses. Significant deposition occurs in approximately 80% of hydrogel lenses and many contact lens wearers cease wearing lenses due to problems associated with deposition. The contact lens field is not alone in encountering complications associated with interactions between the body and artificial devices. The widespread use of man-made materials to replace structures in the body has emphasised the importance of studies that examine the interactions between implantation materials and body tissues.This project used carefully controlled, randomized clinical studies to study the interactive effects of contact lens materials, care systems, replacement periods and patient differences. Of principal interest was the influence of these factors on material deposition and their subsequent impact on subjective performance. A range of novel and established analytical techniques were used to examine hydrogel lenses following carefully controlled clinical studies in which clinical performance was meticulously monitored. These studies established the inter-relationship between clinical performance and deposition to be evaluated. This project showed that significant differences exist between individuals in their ability to deposit hydrogel lenses, with approximately 20% of subjects displaying significant deposition irrespective of the lens material. Additionally, materials traditionally categorised together show markedly different spoilation characteristics, which are wholly attributable to their detailed chemical structure. For the first time the in vivo deposition kinetics of both protein and lipid in charged and uncharged polymers was demonstrated. In addition the importance of care systems in the deposition process was shown, clearly demonstrating the significance of the quality rather than the quantity of deposition in influencing subjective performance.
Resumo:
The primary objective of this research has been to determine the potential of fluorescence spectroscopy as a method for analysis of surface deposition on contact lenses. In order to achieve this it was first necessary to ascertain whether fluorescence analysis would be able to detect and distinguish between protein and lipid deposited on a lens surface. In conjunction with this it was important to determine the specific excitation wavelengths at which these deposited species were detected with the greatest sensitivity. Experimental observations showed that an excitation wavelength of 360nm would detect lipid deposited on a lens surface, and an excitation wavelength of 280nm would detect and distinguish between protein and lipid deposited on a contact lens. It was also very important to determine whether clean unspoilt lenses showed significant levels of fluorescence themselves. Fluorescence spectra recorded from a variety of unworn contact lenses at excitation wavelengths of 360nm and 280nm indicated that most contact lens materials do not fluoresce themselves to any great extent. Following these initial experiments various clinically and laboratory based studies were performed using fluorescence spectroscopy as a method of analysing contact lens deposition levels. The clinically based studies enabled analysis of contact lenses with known wear backgrounds to be rapidly and individually analysed following discontinuation of wear. Deposition levels in the early stages of lens wear were determined for various lens materials. The effect of surfactant cleaning on deposition levels was also investigated. The laboratory based studies involved comparing some of the in vivo results with those of identical lenses that had been spoilt using an in vitro method. Finally, an examination of lysosyme migration into and out of stored ionic high water contact lenses was made.
Resumo:
Tissue transglutaminase (TG2) has been reported as a wound response protein. Once over-expressed by cells under stress such as during wound healing or following tissue damage, TG2 can be secreted and deposited into extracellular matrix, where it forms a heterocomplex (TG-FN) with the abundant matrix protein fibronectin (FN). A further cellular response elicited after tissue damage is that of matrix remodelling leading to the release of the Arg-Gly-Asp (RGD) containing matrix fragments by matrix matelloproteinases (MMPs). These peptides are able to block the interaction between integrin cell surface receptors and ECM proteins, leading to the loss of cell adhesion and ultimately Anoikis. This study provides a mechanism for TG2, as a stress-induced matrix protein, in protecting the cells from the RGD-dependent loss of cell adhesion and rescuing the cells from Anoikis. Mouse fibroblasts were used as a major model for this study, including different types of cell surface receptor knockout mouse embryonic fibroblasts (MEFs) (such as syndecan-4, a5, ß1 or ß3 integrins). In addition specific syndecan-2 targetting siRNAs, ß1 integrin and a4ß1 integrin functional blocking antibodies, and a specific targeting peptide against a5ß1 integrin A5-1 were used to investigate the involvement of these receptors in the RGD-independent cell adhesion on TG-FN. Crucial for TG-FN to compensate the RGD-independent cell adhesion and actin cytoskeleton formation is the direct interaction between the heparan sulfate chains of syndecan-4 and TG2, which elicits the inside-out signalling of a5ß1 integrin and the intracellular activation of syndecan-2 by protein kinase C a (PKCa). By using specific inhibitors, a cell-permeable inhibiting peptide and the detection of the phosphorylation sites for protein kinases and/or the translocation of PKCa via Western blotting, the activation of PKCa, focal adhesion kinase (FAK), ERK1/2 and Rho kinase (ROCK) were confirmed as downstream signalling molecules. Importantly, this study also investigated the influence of TG-FN on matrix turnover and demonstrated that TG-FN can restore the RGD-independent FN deposition process via an a5ß1 integrin and syndecan-4/2 co-signalling pathway linked by PKCa in a transamidating-independent manner. These data provide a novel function for TG2 in wound healing and matrix turnover which is a key event in a number of both physiological and pathological processes.
Tear analysis and lens-tear interactions:Part I. Protein fingerprinting with microfluidic technology
Resumo:
The purpose of this work is to establish the application of a fully automated microfluidic chip based protein separation assay in tear analysis. It is rapid, requires small sample volumes and is vastly superior to, and more convenient than, comparable conventional gel electrophoresis assays. The protein sizing chip technology was applied to three specific fields of analysis. Firstly tear samples were collected regularly from subjects establishing the baseline effects of tear stimulation, tear state and patient health. Secondly tear samples were taken from lens wearing eyes and thirdly the use of microfluidic technology was assessed as a means to investigate a novel area of tear analysis, which we have termed the 'tear envelope'. Utilising the Agilent 2100 Bioanalyzer in combination with the Protein 200 Plus LabChip kit, these studies investigated tear proteins in the range of 14-200 kDa. Particular attention was paid to the relative concentrations of lysozyme, tear lipocalin, secretory IgA (sIgA), IgG and lactoferrin, together with the overall tear electropherogram 'fingerprint'. Furthermore, whilst lens-tear interaction studies are generally thought of as an investigation into the effects of tears components on the contact lens material, i.e. deposition studies, this report addresses the reverse phenomenon-the effect of the lens, and particularly the newly inserted lens, on the tear fluid composition and dynamics. The use of microfluidic technology provides a significant advance in tear studies and should prove invaluable in tear diagnostics and contact lens performance analysis.
Resumo:
Despite the tremendous application potentials of carbon nanotubes (CNTs) proposed by researchers in the last two decades, efficient experimental techniques and methods are still in need for controllable production of CNTs in large scale, and for conclusive characterizations of their properties in order to apply CNTs in high accuracy engineering. In this dissertation, horizontally well-aligned high quality single-walled carbon nanotubes (SWCNTs) have been successfully synthesized on St-cut quartz substrate by chemical vapor deposition (CVD). Effective radial moduli (Eradial) of these straight SWCNTs have been measured by using well-calibrated tapping mode and contact mode atomic force microscopy (AFM). It was found that the measured Eradial decreased from 57 to 9 GPa as the diameter of the SWCNTs increased from 0.92 to 1.91 nm. The experimental results were consistent with the recently reported theoretical simulation data. The method used in this mechanical property test can be easily applied to measure the mechanical properties of other low-dimension nanostructures, such as nanowires and nanodots. The characterized sample is also an ideal platform for electrochemical tests. The electrochemical activities of redox probes Fe(CN)63-/4-, Ru(NH3) 63+, Ru(bpy)32+ and protein cytochrome c have been studied on these pristine thin films by using aligned SWCNTs as working electrodes. A simple and high performance electrochemical sensor was fabricated. Flow sensing capability of the device has been tested for detecting neurotransmitter dopamine at physiological conditions with the presence of Bovine serum albumin. Good sensitivity, fast response, high stability and anti-fouling capability were observed. Therefore, the fabricated sensor showed great potential for sensing applications in complicated solution.^
Resumo:
Maintenance of vascular homeostasis is an active process that is dependent on continuous signaling by the quiescent endothelial cells (ECs) that line mature vessels. Defects in vascular homeostasis contribute to numerous disorders of significant clinical impact including hypertension and atherosclerosis. The signaling pathways that are active in quiescent ECs are distinct from those that regulate angiogenesis but are comparatively poorly understood. Here we demonstrate that the previously uncharacterized scaffolding protein Caskin2 is a novel regulator of EC quiescence and that loss of Caskin2 in mice results in elevated blood pressure at baseline. Caskin2 is highly expressed in ECs from various vascular beds both in vitro and in vivo. When adenovirally expressed in vitro, Caskin2 inhibits EC proliferation and migration but promotes survival during hypoxia and nutrient deprivation. Likewise, loss of Caskin2 in vivo promotes increased vascular branching and permeability in mouse and zebrafish models. Caskin2 knockout mice are born in normal Mendelian ratios and appear grossly normal during early adulthood. However, they have consistently elevated systolic and diastolic blood pressure at baseline and significant context-dependent abnormalities in systemic metabolism (e.g., body weight, fat deposition, and glucose homeostasis). Although the precise molecular mechanisms of these effects remain unclear, we have shown that Caskin2 interacts with several proteins known to have important roles in endothelial biology and cardiovascular disease including the serine/threonine phosphatase PP1, the endothelial receptor Tie1, and eNOS, which is a critical regulator of vascular homeostasis. Ongoing work seeks to further characterize the functions of Caskin2 and its mechanisms of action with a focus on how Caskin2-mediated regulation of endothelial phenotype relates to its systemic effects on cardiovascular and metabolic function.
Resumo:
The design and application of effective drug carriers is a fundamental concern in the delivery of therapeutics for the treatment of cancer and other vexing health problems. Traditionally utilized chemotherapeutics are limited in efficacy due to poor bioavailability as a result of their size and solubility as well as significant deleterious effects to healthy tissue through their inability to preferentially target pathological cells and tissues, especially in treatment of cancer. Thus, a major effort in the development of nanoscopic drug delivery vehicles for cancer treatment has focused on exploiting the inherent differences in tumor physiology and limiting the exposure of drugs to non-tumorous tissue, which is commonly achieved by encapsulation of chemotherapeutics within macromolecular or supramolecular carriers that incorporate targeting ligands and that enable controlled release. The overall aim of this work is to engineer a hybrid nanomaterial system comprised of protein and silica and to characterize its potential as an encapsulating drug carrier. The synthesis of silica, an attractive nanomaterial component because it is both biocompatible as well as structurally and chemically stable, within this system is catalyzed by self-assembled elastin-like polypeptide (ELP) micelles that incorporate of a class of biologically-inspired, silica-promoting peptides, silaffins. Furthermore, this methodology produces near-monodisperse, hybrid inorganic/micellar materials under mild reaction conditions such as temperature, pH and solvent. This work studies this material system along three avenues: 1) proof-of-concept silicification (i.e. the formation and deposition of silica upon organic materials) of ELP micellar templates, 2) encapsulation and pH-triggered release of small, hydrophobic chemotherapeutics, and 3) selective silicification of templates to potentiate retention of peptide targeting ability.
Resumo:
BACKGROUND: We report the use of an ex vivo precision cut liver slice (PCLS) mouse model for studying hepatic schistosomiasis. In this system, liver tissue is unfixed, unfrozen, and alive for maintenance in culture and subsequent molecular analysis.
METHODS AND FINDINGS: Using thick naive mouse liver tissue and sterile culture conditions, the addition of soluble egg antigen (SEA) derived from Schistosoma japonicum eggs, followed 4, 24 and 48 hrs time points. Tissue was collected for transcriptional analysis and supernatants collected to quantitate liver enzymes, cytokines and chemokines. No significant hepatotoxicity was demonstrated by supernatant liver enzymes due to the presence of SEA. A proinflammatory response was observed both at the transcriptional level and at the protein level by cytokine and chemokine bead assay. Key genes observed elevated transcription in response to the addition of SEA included: IL1-α and IL1-β, IL6, all associated with inflammation. The recruitment of antigen presenting cells was reflected in increases in transcription of CD40, CCL4 and CSF1. Indications of tissue remodeling were seen in elevated gene expression of various Matrix MetalloProteinases (MMP3, 9, 10, 13) and delayed increases in TIMP1. Collagen deposition was significantly reduced in the presence of SEA as shown in COL1A1 expression by qPCR after 24 hrs culture. Cytokine and chemokine analysis of the culture supernatants confirmed the elevation of proteins including IL6, CCL3, CCL4 and CXCL5.
CONCLUSIONS: This ex vivo model system for the synchronised delivery of parasite antigen to liver tissue provides an insight into the early phase of hepatic schistosomiasis, corresponding with the release of soluble proteins from dying schistosome eggs.
Resumo:
Abnormalities in brains of Alzheimer's disease (AD) patients are thought to start long before the first clinical symptoms emerge. The identification of affected individuals at this 'preclinical AD' stage relies on biomarkers such as decreased levels of the amyloid-β peptide (Aβ) in the cerebrospinal fluid (CSF) and positive amyloid positron emission tomography scans. However, there is little information on the longitudinal dynamics of CSF biomarkers, especially in the earliest disease stages when therapeutic interventions are likely most effective. To this end, we have studied CSF Aβ changes in three Aβ precursor protein transgenic mouse models, focusing our analysis on the initial Aβ deposition, which differs significantly among the models studied. Remarkably, while we confirmed the CSF Aβ decrease during the extended course of brain Aβ deposition, a 20-30% increase in CSF Aβ40 and Aβ42 was found around the time of the first Aβ plaque appearance in all models. The biphasic nature of this observed biomarker changes stresses the need for longitudinal biomarker studies in the clinical setting and the search for new 'preclinical AD' biomarkers at even earlier disease stages, by using both mice and human samples. Ultimately, our findings may open new perspectives in identifying subjects at risk for AD significantly earlier, and in improving the stratification of patients for preventive treatment strategies.