992 resultados para protective group
Resumo:
Background: There are innumerable diabetes studies that have investigated associations between risk factors, protective factors, and health outcomes; however, these individual predictors are part of a complex network of interacting forces. Moreover, there is little awareness about resilience or its importance in chronic disease in adulthood, especially diabetes. Thus, this is the first study to: (1) extensively investigate the relationships among a host of predictors and multiple adaptive outcomes; and (2) conceptualise a resilience model among people with diabetes. Methods: This cross-sectional study was divided into two research studies. Study One was to translate two diabetes-specific instruments (Problem Areas In Diabetes, PAID; Diabetes Coping Measure, DCM) into a Chinese version and to examine their psychometric properties for use in Study Two in a convenience sample of 205 outpatients with type 2 diabetes. In Study Two, an integrated theoretical model is developed and evaluated using the structural equation modelling (SEM) technique. A self-administered questionnaire was completed by 345 people with type 2 diabetes from the endocrine outpatient departments of three hospitals in Taiwan. Results: Confirmatory factor analyses confirmed a one-factor structure of the PAID-C which was similar to the original version of the PAID. Strong content validity of the PAID-C was demonstrated. The PAID-C was associated with HbA1c and diabetes self-care behaviours, confirming satisfactory criterion validity. There was a moderate relationship between the PAID-C and the Perceived Stress Scale, supporting satisfactory convergent validity. The PAID-C also demonstrated satisfactory stability and high internal consistency. A four-factor structure and strong content validity of the DCM-C was confirmed. Criterion validity demonstrated that the DCM-C was significantly associated with HbA1c and diabetes self-care behaviours. There was a statistical correlation between the DCM-C and the Revised Ways of Coping Checklist, suggesting satisfactory convergent validity. Test-retest reliability demonstrated satisfactory stability of the DCM-C. The total scale of the DCM-C showed adequate internal consistency. Age, duration of diabetes, diabetes symptoms, diabetes distress, physical activity, coping strategies, and social support were the most consistent factors associated with adaptive outcomes in adults with diabetes. Resilience was positively associated with coping strategies, social support, health-related quality of life, and diabetes self-care behaviours. Results of the structural equation modelling revealed protective factors had a significant direct effect on adaptive outcomes; however, the construct of risk factors was not significantly related to adaptive outcomes. Moreover, resilience can moderate the relationships among protective factors and adaptive outcomes, but there were no interaction effects of risk factors and resilience on adaptive outcomes. Conclusion: This study contributes to an understanding of how risk factors and protective factors work together to influence adaptive outcomes in blood sugar control, health-related quality of life, and diabetes self-care behaviours. Additionally, resilience is a positive personality characteristic and may be importantly involved in the adjustment process among people living with type 2 diabetes.
Resumo:
The 1:1 proton-transfer compounds of L-tartaric acid with 3-aminopyridine [3-aminopyridinium hydrogen (2R,3R)-tartrate dihydrate, C5H7N2+·C4H5O6-·2H2O, (I)], pyridine-3-carboxylic acid (nicotinic acid) [anhydrous 3-carboxypyridinium hydrogen (2R,3R)-tartrate, C6H6NO2+·C4H5O6-, (II)] and pyridine-2-carboxylic acid [2-carboxypyridinium hydrogen (2R,3R)-tartrate monohydrate, C6H6NO2+·C4H5O6-·H2O, (III)] have been determined. In (I) and (II), there is a direct pyridinium-carboxyl N+-HO hydrogen-bonding interaction, four-centred in (II), giving conjoint cyclic R12(5) associations. In contrast, the N-HO association in (III) is with a water O-atom acceptor, which provides links to separate tartrate anions through Ohydroxy acceptors. All three compounds have the head-to-tail C(7) hydrogen-bonded chain substructures commonly associated with 1:1 proton-transfer hydrogen tartrate salts. These chains are extended into two-dimensional sheets which, in hydrates (I) and (III) additionally involve the solvent water molecules. Three-dimensional hydrogen-bonded structures are generated via crosslinking through the associative functional groups of the substituted pyridinium cations. In the sheet struture of (I), both water molecules act as donors and acceptors in interactions with separate carboxyl and hydroxy O-atom acceptors of the primary tartrate chains, closing conjoint cyclic R44(8), R34(11) and R33(12) associations. Also, in (II) and (III) there are strong cation carboxyl-carboxyl O-HO hydrogen bonds [OO = 2.5387 (17) Å in (II) and 2.441 (3) Å in (III)], which in (II) form part of a cyclic R22(6) inter-sheet association. This series of heteroaromatic Lewis base-hydrogen L-tartrate salts provides further examples of molecular assembly facilitated by the presence of the classical two-dimensional hydrogen-bonded hydrogen tartrate or hydrogen tartrate-water sheet substructures which are expanded into three-dimensional frameworks via peripheral cation bifunctional substituent-group crosslinking interactions.
Resumo:
The current study sought to understand adolescent protective behavior in friendship using a Theory of Planned Behavior framework. In particular, the study sought to consider a young persons’ direct and active intervention to inhibit their friends’ risky behavior or to assist them when the behavior leads to injury. The role of attitudes regarding the consequences, norms and control about protective behavior were examined both qualitatively through focus groups (n= 50) and quantitatively through surveys from a sample of 540 Year 9 students (13-14 years old). There was some support for the theory with attitudes regarding the consequences of the behavior and norms predicting intended protective behavior. A path analysis was conducted with a sub-sample of 140 students which showed that intentions to be protective and perceived control to undertake protective behavior directly predicted such behavior after a 3 month interval. Attitudes towards the consequences and norms only indirectly predicted protective behavior via intention. The findings provide important applied information for interventions designed to increase adolescent protective behavior in their friendships.
Resumo:
This naturalistic study investigated the mechanisms of change in measures of negative thinking and in 24-h urinary metabolites of noradrenaline (norepinephrine), dopamine and serotonin in a sample of 43 depressed hospital patients attending an eight-session group cognitive behavior therapy program. Most participants (91%) were taking antidepressant medication throughout the therapy period according to their treating Psychiatrists' prescriptions. The sample was divided into outcome categories (19 Responders and 24 Non-responders) on the basis of a clinically reliable change index [Jacobson, N.S., & Truax, P., 1991. Clinical significance: a statistical approach to defining meaningful change in psychotherapy research. Journal of Consulting and Clinical Psychology, 59, 12–19.] applied to the Beck Depression Inventory scores at the end of the therapy. Results of repeated measures analysis of variance [ANOVA] analyses of variance indicated that all measures of negative thinking improved significantly during therapy, and significantly more so in the Responders as expected. The treatment had a significant impact on urinary adrenaline and metadrenaline excretion however, these changes occurred in both Responders and Non-responders. Acute treatment did not significantly influence the six other monoamine metabolites. In summary, changes in urinary monoamine levels during combined treatment for depression were not associated with self-reported changes in mood symptoms.
Resumo:
This document contains a creative work – the text of a young adult novel, Skydweller – and an exegesis discussing the ways in which identity and the adolescent crisis of group identity versus alienation are represented in young adult science fiction/fantasy novels.
Resumo:
Successful wound repair and normal turnover of the extracellular matrix relies on a balance between matrix metalloproteinases (MMPs) and their natural inhibitors (the TIMPs). When over-expression of MMPs and abnormally high levels of activation or low expression of TIMPs are encountered, excessive degradation of connective tissue and the formation of chronic ulcers can occur. One strategy to rebalance MMPs and TIMPs is to use inhibitors. We have designed a synthetic pseudopeptide inhibitor with an amine linker group based on a known high-affinity peptidomimetic MMP inhibitor have demonstrated inhibition of MMP-1, -2, -3 and -9 activity in standard solutions. The inhibitor was also tethered to a polyethylene glycol hydrogel using a facile reaction between the linker unit on the inhibitor and the hydrogel precursors. After tethering, we observed inhibition of the MMPs although there was an increase in the IC50s which was attributed to poor diffusion of the MMPs into the hydrogels, reduced activity of the tethered inhibitor or incomplete incorporation of the inhibitor into the hydrogels. When the tethered inhibitors were tested against chronic wound fluid we observed significant inhibition in proteolytic activity suggesting our approach may prove useful in rebalancing MMPs within chronic wounds.
Resumo:
This thesis is about the derivation of the addition law on an arbitrary elliptic curve and efficiently adding points on this elliptic curve using the derived addition law. The outcomes of this research guarantee practical speedups in higher level operations which depend on point additions. In particular, the contributions immediately find applications in cryptology. Mastered by the 19th century mathematicians, the study of the theory of elliptic curves has been active for decades. Elliptic curves over finite fields made their way into public key cryptography in late 1980’s with independent proposals by Miller [Mil86] and Koblitz [Kob87]. Elliptic Curve Cryptography (ECC), following Miller’s and Koblitz’s proposals, employs the group of rational points on an elliptic curve in building discrete logarithm based public key cryptosystems. Starting from late 1990’s, the emergence of the ECC market has boosted the research in computational aspects of elliptic curves. This thesis falls into this same area of research where the main aim is to speed up the additions of rational points on an arbitrary elliptic curve (over a field of large characteristic). The outcomes of this work can be used to speed up applications which are based on elliptic curves, including cryptographic applications in ECC. The aforementioned goals of this thesis are achieved in five main steps. As the first step, this thesis brings together several algebraic tools in order to derive the unique group law of an elliptic curve. This step also includes an investigation of recent computer algebra packages relating to their capabilities. Although the group law is unique, its evaluation can be performed using abundant (in fact infinitely many) formulae. As the second step, this thesis progresses the finding of the best formulae for efficient addition of points. In the third step, the group law is stated explicitly by handling all possible summands. The fourth step presents the algorithms to be used for efficient point additions. In the fifth and final step, optimized software implementations of the proposed algorithms are presented in order to show that theoretical speedups of step four can be practically obtained. In each of the five steps, this thesis focuses on five forms of elliptic curves over finite fields of large characteristic. A list of these forms and their defining equations are given as follows: (a) Short Weierstrass form, y2 = x3 + ax + b, (b) Extended Jacobi quartic form, y2 = dx4 + 2ax2 + 1, (c) Twisted Hessian form, ax3 + y3 + 1 = dxy, (d) Twisted Edwards form, ax2 + y2 = 1 + dx2y2, (e) Twisted Jacobi intersection form, bs2 + c2 = 1, as2 + d2 = 1, These forms are the most promising candidates for efficient computations and thus considered in this work. Nevertheless, the methods employed in this thesis are capable of handling arbitrary elliptic curves. From a high level point of view, the following outcomes are achieved in this thesis. - Related literature results are brought together and further revisited. For most of the cases several missed formulae, algorithms, and efficient point representations are discovered. - Analogies are made among all studied forms. For instance, it is shown that two sets of affine addition formulae are sufficient to cover all possible affine inputs as long as the output is also an affine point in any of these forms. In the literature, many special cases, especially interactions with points at infinity were omitted from discussion. This thesis handles all of the possibilities. - Several new point doubling/addition formulae and algorithms are introduced, which are more efficient than the existing alternatives in the literature. Most notably, the speed of extended Jacobi quartic, twisted Edwards, and Jacobi intersection forms are improved. New unified addition formulae are proposed for short Weierstrass form. New coordinate systems are studied for the first time. - An optimized implementation is developed using a combination of generic x86-64 assembly instructions and the plain C language. The practical advantages of the proposed algorithms are supported by computer experiments. - All formulae, presented in the body of this thesis, are checked for correctness using computer algebra scripts together with details on register allocations.
Resumo:
NIR and IR spectroscopy has been applied for detection of chemical species and the nature of hydrogen bonding in arsenate complexes. The structure and spectral properties of copper(II) arsenate minerals chalcophyllite and chenevixite are compared with copper(II) sulphate minerals devilline, chalcoalumite and caledonite. Split NIR bands in the electronic spectrum of two ranges 11700-8500 cm-1 and 8500-7200 cm-1 confirm distortion of octahedral symmetry for Cu(II) in the arsenate complexes. The observed bands with maxima at 9860 and 7750 cm-1 are assigned to Cu(II) transitions 2B1g ® 2B2g and 2B1g ® 2A1g. Overlapping bands in the NIR region 4500-4000 cm-1 is the effect of multi anions OH-, (AsO4)3- and (SO4)2-. The observation of broad and diffuse bands in the range 3700-2900 cm-1 confirms strong hydrogen bonding in chalcophyllite relative to chenevixite. The position of the water bending vibrations indicates the water is strongly hydrogen bonded in the mineral structure. The strong absorption feature centred at 1644 cm-1 in chalcophyllite indicates water is strongly hydrogen bonded in the mineral structure. The H2O-bending vibrations shift to low wavenumbers in chenevixite and an additional band observed at 1390 cm-1 is related to carbonate impurity. The characterisation of IR spectra by ν3 antisymmetric stretching vibrations of (SO4)2- and (AsO4)3 ions near 1100 and 800 cm-1 respectively is the result of isomorphic substitution for arsenate by sulphate in both the minerals of chalcophyllite and chenevixite.
Resumo:
Aim: Worldwide, injury is the leading cause of death and disability for young people. Injuries among young people are commonly associated with risk taking behaviour, including violence and transport risks, which often occur in the context of alcohol use. The school environment has been identified as having a significant role in shaping adolescent behaviour. In particular, school connectedness, the degree to which adolescents feel that they belong and are accepted at school, has been shown to be an important protective factor. Strategies for increasing school connectedness may therefore be effective in reducing risk taking and associated injury. Prior to developing connectedness strategies, it is important to understand the perspectives of those in the school regarding the construct and how it is realised in the school context. The aim of this research was to understand teachers’ perspectives of school connectedness, the strategies they employ to connect with students, and their perceptions of school connectedness as a strategy for risk taking and injury prevention. Method: In depth interviews of approximately 45 minutes duration were conducted with 13 Health and PE teachers and support staff from 2 high schools in Southeast Queensland, Australia. Additionally, 6 focus group workshop discussions were held with 35 Education department employees (5-6 per group), including teachers from 15 Southeast Queensland high schools. Results: Participants were found to place strong importance on the development of connectedness among students, including those at risk for problem behaviour. Strategies used to promote connectedness included building trust, taking an interest in each student and being available to talk to, and finding something positive for students to succeed at. Teachers identified strategies as being related to decreased risk taking behavior. Teacher training on school connectedness was perceived as an important and useful inclusion in a school based injury prevention program. Conclusions: The established link between increased school connectedness and decreased problem behaviour has implications for school based strategies designed to decrease adolescent risk taking behaviour and associated injury. Targeting school connectedness as a point of intervention, in conjunction with individual attitude and behaviour change programs, may be an effective injury prevention strategy.
Resumo:
The near-infrared (NIR) and infrared (IR) spectroscopy has been applied for characterisation of three complex Cu-Zn sulphate/phosphate minerals, namely ktenasite, orthoserpierite and kipushite. The spectral signatures of the three minerals are quite distinct in relation to their composition and structure. The effect of structural cations substitution (Zn2+ and Cu2+) on band shifts is significant both in the electronic and vibrational spectra of these Cu-Zn minerals. The variable Cu:Zn ratio between Zn-rich and Cu-rich compositions shows a strong effect on Cu(II) bands in the electronic spectra. The Cu(II) spectrum is most significant in kipushite (Cu-rich) with bands displayed at high wavenumbers at11390 and 7545 cm-1. The isomorphic substitution of Cu2+ for Zn2+ is reflected in the NIR and IR spectroscopic signatures. The multiple bands for 3 and 4 (SO4)2- stretching vibrations in ktenasite and orthoserpierite are attributed to the reduction of symmetry to the sulphate ion from Td to C2V. The IR spectrum of kipushite is characterised by strong (PO4)3- vibrational modes at 1090 and 990 cm-1. The range of IR absorption is higher in Ktenasite than in kipushite while it is intermediate in orthoserpierite.
Resumo:
Minimizing complexity of group key exchange (GKE) protocols is an important milestone towards their practical deployment. An interesting approach to achieve this goal is to simplify the design of GKE protocols by using generic building blocks. In this paper we investigate the possibility of founding GKE protocols based on a primitive called multi key encapsulation mechanism (mKEM) and describe advantages and limitations of this approach. In particular, we show how to design a one-round GKE protocol which satisfies the classical requirement of authenticated key exchange (AKE) security, yet without forward secrecy. As a result, we obtain the first one-round GKE protocol secure in the standard model. We also conduct our analysis using recent formal models that take into account both outsider and insider attacks as well as the notion of key compromise impersonation resilience (KCIR). In contrast to previous models we show how to model both outsider and insider KCIR within the definition of mutual authentication. Our analysis additionally implies that the insider security compiler by Katz and Shin from ACM CCS 2005 can be used to achieve more than what is shown in the original work, namely both outsider and insider KCIR.
Resumo:
Background: Ambiguity remains about the effectiveness of wearing surgical face masks. The purpose of this study was to assess the impact on surgical site infections when non-scrubbed operating room staff did not wear surgical face masks. Design: Randomised controlled trial. Participants: Patients undergoing elective or emergency obstetric, gynecological, general, orthopaedic, breast or urological surgery in an Australian tertiary hospital. Intervention: 827 participants were enrolled and complete follow-up data was available for 811 (98.1%) patients. Operating room lists were randomly allocated to a ‘Mask roup’ (all non-scrubbed staff wore a mask) or ‘No Mask group’ (none of the non-scrubbed staff wore masks). Primary end point: Surgical site infection (identified using in-patient surveillance; post discharge follow-up and chart reviews). The patient was followed for up to six weeks. Results: Overall, 83 (10.2%) surgical site infections were recorded; 46/401 (11.5%) in the Masked group and 37/410 (9.0%) in the No Mask group; odds ratio (OR) 0.77 (95% confidence interval (CI) 0.49 to 1.21), p = 0.151. Independent risk factors for surgical site infection included: any pre-operative stay (adjusted odds ratio [aOR], 0.43 (95% CI, 0.20; 0.95), high BMI aOR, 0.38 (95% CI, 0.17; 0.87), and any previous surgical site infection aOR, 0.40 (95% CI, 0.17; 0.89). Conclusion: Surgical site infection rates did not increase when non-scrubbed operating room personnel did not wear a face mask.
Effect of poly(acrylic acid) end-group functionality on inhibition of calcium oxalate crystal growth
Resumo:
A number of series of poly(acrylic acids) (PAA) of differing end-groups and molecular weights prepared using atom transfer radical polymerization were used as inhibitors for the crystallization of calcium oxalate at 23 and 80°C. As measured by turbidimetry and conductivity and as expected from previous reports, all PAA series were most effective for inhibition of crystallization at molecular weights of 1500–4000. However, the extent of inhibition was in general strongly dependent on the hydrophobicity and molecular weight of the end-group. These results may be explicable in terms of adsorption/desorption of PAA to growth sites on crystallites. The overall effectiveness of the series didn't follow a simple trend with end-group hydrophobicity, suggesting self-assembly behavior or a balance between adsorption and desorption rates to crystallite surfaces may be critical in the mechanism of inhibition of calcium oxalate crystallization.
Resumo:
A number of series of poly(acrylic acids) (PAA) of differing end-groups and molecular mass were used to study the inhibition of calcium oxalate crystallization. The effects of the end-group on crystal speciation and morphology were significant and dramatic, with hexyl-isobutyrate end groups giving preferential formation of calcium oxalate dihydrate (COD) rather than the more stable calcium oxalate monohydrate (COM), while both more hydrophobic end-groups and less-hydrophobic end groups led predominantly to formation of the least thermodynamically stable form of calcium oxalate, calcium oxalate trihydrate. Conversely, molecular mass had little impact on calcium oxalate speciation or crystal morphology. It is probable that the observed effects are related to the rate of desorption of the PAA moiety from the crystal (lite) surfaces and that the results point to a major role for end-group as well as molecular mass in controlling desorption rate.