959 resultados para profluorescent probes
Resumo:
The characterization of thermocouple sensors for temperature measurement in variable flow environments is a challenging problem. In this paper, novel difference equation-based algorithms are presented that allow in situ characterization of temperature measurement probes consisting of two-thermocouple sensors with differing time constants. Linear and non-linear least squares formulations of the characterization problem are introduced and compared in terms of their computational complexity, robustness to noise and statistical properties. With the aid of this analysis, least squares optimization procedures that yield unbiased estimates are identified. The main contribution of the paper is the development of a linear two-parameter generalized total least squares formulation of the sensor characterization problem. Monte-Carlo simulation results are used to support the analysis.
Resumo:
In this study, we report on a novel, expedited solid-phase approach for the synthesis of biotinylated and fluorescently tagged irreversible affinity based probes for the chymotrypsin and elastase-like serine proteases. The novel solid-phase biotinylation or fluorescent labeling of the aminoalkane diphenyl phosphonate warhead using commercially available Biotin-PEG-NovaTag or EDANS NovaTag resin permits rapid, facile synthesis of these reagents. We demonstrate the kinetic evaluation and utilization of a number of these irreversible inactivators for chymotrypsin-like (chymotrypsin/human cathepsin G) and elastase-like serine proteases. Encouragingly, these compounds display comparable potency against their target proteases as their N-benzyloxycarbonyl (Cbz)-protected parent compounds, from which they were derived, and function as efficient active site-directed inactivators of their target proteases. We subsequently applied the biotinylated reagents for the sensitive detection of protease species via Western blot, showing that the inactivation of the protease was specifically mediated through the active site serine. Furthermore, we also demonstrate the successful detection of serine protease species with the fluorescently labeled derivatives “in-gel”, thus avoiding the need for downstream Western blotting. Finally, we also show the utility of biotinylated and pegylated affinity probes for the isolation/enrichment of serine protease species, via capture with immobilized streptavidin, and their subsequent identification via de novo sequencing. Given their selectivity of action against the serine proteases, we believe that these reagents can be exploited for the direct, rapid, and selective identification of these enzymes from biological milieu containing multiple protease subclasses.
Resumo:
High-resolution polymerase chain reaction using sequence-specific oligonucleotide probes (PCR-SSOP) typing methods for HLA-A identification have been established. The four systems, which operate independently of each other, are intended for use as secondary typing systems following HLA-A identification with a medium-resolution PCR-SSOP technique. The systems, all using digoxigenin-labelled probes, are based on group specific amplifications for resolution of: i) HLA-A*29 & -A*33; ii) HLA-A*24 & -A*30; and iii) HLA-A*26, -A*25, -A*11, -A*34, -A*66 and -A*68 alleles, respectively. The fourth system, for the detection of HLA-A*02 alleles, is a modification of a previously reported PCR-SSOP subtyping system. The methods have been applied to individuals from the local bone marrow registry and HLA-A allele frequencies for the Northern Ireland population have been established.
Resumo:
Erythropoietin (EPO) is the main humoral stimulus of erythropoiesis. In adult mammals, the kidney releases EPO in response to hypoxic stress. Conflicting data have suggested either renal tubular or peritubular cell origins of EPO synthesis in vivo. In situ hybridization studies were performed to define further the kidney cell type(s) capable of increasing EPO gene expression during hypoxic stimulation. EPO gene expression was stimulated in mice exposed to acute hypobaric hypoxia. Kidneys from hypoxic and control normoxic mice were obtained. Six digoxigenin-labelled oligonucleotide probes complementary to EPO exon sequences were utilized for in situ hybridization for EPO messenger RNA. Positive hybridization signals were identified in some proximal tubular cells, confined to the inner third of the renal cortex of hypoxic mouse kidney.
Resumo:
The permeability of the outer membrane (OM) to hydrophobic probes and its susceptibility to bactericidal cationic peptides were investigated for natural rough Brucella ovis and for mutant rough Brucella abortus strains. The OM of B. ovis displayed an abrupt and faster kinetic profile than rough B. abortus during the uptake of the hydrophobic probe N-phenyl-naphthylamine. B. ovis was more sensitive than rough B. abortus to the action of cationic peptides. Bactenecins 5 and 7 induced morphological alterations on the OMs of both rough Brucella strains. B. ovis lipopolysaccharide (LPS) captured considerably more polymyxin B than LPSs from both rough and smooth B. abortus strains. Polymyxin B, poly-L-lysine, and poly-L-ornithine produced a thick coating on the surfaces of both strains, which was more evident in B. ovis than in rough B. abortus. The distinct functional properties of the OMs of these two rough strains correlate with some structural differences of their OMs and with their different biological behaviors in animals and culture cells.
Resumo:
This paper reports the detailed description and validation of a fully automated, computer controlled analytical method to spatially probe the gas composition and thermal characteristics in packed bed systems. This method has been designed to limit the invasiveness of the probe, a characteristic assessed using CFD. The thermocouple is aligned with the sampling holes to enable simultaneous recording of the gas composition and temperature profiles. This analysis technique has been validated by studying CO oxidation over a 1% Pt/Al2O3 catalyst. The resultant profiles have been compared with a micro-kinetic model, to further assess the strength of the technique.
Resumo:
Cystic Fibrosis (CF) is a genetic disease featuring a chronic cycle of inflammation and infection in the airways of sufferers. Mutations lead to altered ion transport, which in turn causes dehydrated airways and reduced mucociliary clearance which predisposes the patient to infection, resulting in a severe immune response and tissue destruction (1). Airway dehydration is primarily caused by the hyperabsorption of sodium by the epithelial sodium channel (ENaC) (2). ENaC is activated by the action of a number of predominantly trypsin-like Channel Activating Proteases (CAPs) including prostasin, matriptase and furin (3). Additional proteases known to activate ENaC include human airway trypsin (3), plasmin, neutrophil elastase and chymotrypsin (4).
Activity profiling is a valuable technique which involves the use of small inhibitory molecules called Activity-Based Probes (ABPs) which can be used to covalently label the active site of proteases and provide a range of information regarding its structure, catalytic mechanism, location and function within biological systems. The development of novel ABPs for CAPs, would enhance understanding of the role of these proteases in CF airways disease and in particular their role in ENaC activation and airway dehydration. This project investigates the application of a range of novel broad-spectrum ABPs targeting the various subclasses of serine proteases, to include those proteases involved in ENaC activation. Additionally, the application of more selective ABPs in detecting specific serine proteases is investigated.
Compounds were synthesised by Solid-Phase Peptide Synthesis (SPPS) using a standard Fmoc/tBu strategy. Kinetic evaluation of synthesised ABPs against various serine proteases was determined by fluorogenic steady-state enzyme assays. Furthermore, application of ABPs and confirmation of irreversible nature of the compounds was carried out through SDS-PAGE and electroblotting techniques.
Synthesised compounds showed potent irreversible inhibition of serine proteases within their respective targeting class (NAP855 vs Trypsin k3/Ki = 2.60 x 106 M-1 min-1, NFP849 vs Chymotrypsin k3/Ki = 1.28 x 106 M-1 min-1 and NVP800 vs Neutrophil Elastase k3/Ki = 6.41 x 104 M-1 min-1). Furthermore ABPs showed little to no cross-reactivity between classes and so display selectivity between classes. The irreversible nature of compounds was further demonstrated through labelling of proteases, followed by separation and detection via SDS-PAGE and electroblotting techniques. Targeted labelling of active proteases only, was demonstrated by failure of ABPs to detect previously inactivated proteases. Extension of the substrate recognition site within probes resulted in an increased potency and selectivity in the detection of the target proteases. Successful detection of neutrophil elastase from CF sputum samples by NVP800, demonstrated the application of compounds within biological samples and their potential use in identifying further proteases involved in ENaC activation and airway dehydration in CF patients.