983 resultados para process mapping
Recommendations for dementia caregiver stress interventions based on Intervention Mapping guidelines
Resumo:
Stress can affect a person's psychological and physical health and cause a variety of conditions including depression, immune system changes, and hypertension (Alzheimer's Association, 2010; Aschbacher et al., 2009; Fredman et al., 2010; Long et al., 2004; Mills et al., 2009; von Känel et al., 2008). The severity and consequences of these conditions can vary based on the duration, amount, and sources of stress experienced by the individual (Black & Hyer, 2010; Coen et al., 1997; Conde-Sala et al., 2010; Pinquart & Sörensen, 2007). Caregivers of people with dementia have an elevated risk for stress and its related health problems because they experience more negative interactions with, and provide more emotional support for, their care recipients than other caregivers. ^ This paper uses a systematic program planning process of Intervention Mapping to organize evidence from literature, qualitative research and theory to develop recommendations for a theory- and evidence-based intervention to improve outcomes for caregivers of people with dementia. A needs assessment was conducted to identify specific dementia caregiver stress influences and a logic model of dementia caregiver stress was developed using the PRECEDE Model. Necessary behavior and environmental outcomes are identified for dementia caregiver stress reduction and performance objectives for each were combined with selected determinants to produce change objectives. Planning matrices were then designed to inform effective theory-based methods and practical applications for recommended intervention delivery. Recommendations for program components, their scope and sequence, the completed program materials, and the program protocols are delineated along with ways to insure that the program is adopted and implemented after it is shown to be effective.^
Resumo:
This data set contains 1851 infrared (IR) spectra, forming a single IR map of diamond sample JH7b. This data set is used to show the application of DiaMap, a computer routine written using PERL, to automatically process diamond IR spectra to obtain quantitative impurity data from them. Full abstract will be added after acceptance of publication.
Resumo:
This paper presents a mapping method for wide row crop fields. The resulting map shows the crop rows and weeds present in the inter-row spacing. Because field videos are acquired with a camera mounted on top of an agricultural vehicle, a method for image sequence stabilization was needed and consequently designed and developed. The proposed stabilization method uses the centers of some crop rows in the image sequence as features to be tracked, which compensates for the lateral movement (sway) of the camera and leaves the pitch unchanged. A region of interest is selected using the tracked features, and an inverse perspective technique transforms the selected region into a bird’s-eye view that is centered on the image and that enables map generation. The algorithm developed has been tested on several video sequences of different fields recorded at different times and under different lighting conditions, with good initial results. Indeed, lateral displacements of up to 66% of the inter-row spacing were suppressed through the stabilization process, and crop rows in the resulting maps appear straight
Resumo:
La mayor parte de los entornos diseñados por el hombre presentan características geométricas específicas. En ellos es frecuente encontrar formas poligonales, rectangulares, circulares . . . con una serie de relaciones típicas entre distintos elementos del entorno. Introducir este tipo de conocimiento en el proceso de construcción de mapas de un robot móvil puede mejorar notablemente la calidad y la precisión de los mapas resultantes. También puede hacerlos más útiles de cara a un razonamiento de más alto nivel. Cuando la construcción de mapas se formula en un marco probabilístico Bayesiano, una especificación completa del problema requiere considerar cierta información a priori sobre el tipo de entorno. El conocimiento previo puede aplicarse de varias maneras, en esta tesis se presentan dos marcos diferentes: uno basado en el uso de primitivas geométricas y otro que emplea un método de representación cercano al espacio de las medidas brutas. Un enfoque basado en características geométricas supone implícitamente imponer un cierto modelo a priori para el entorno. En este sentido, el desarrollo de una solución al problema SLAM mediante la optimización de un grafo de características geométricas constituye un primer paso hacia nuevos métodos de construcción de mapas en entornos estructurados. En el primero de los dos marcos propuestos, el sistema deduce la información a priori a aplicar en cada caso en base a una extensa colección de posibles modelos geométricos genéricos, siguiendo un método de Maximización de la Esperanza para hallar la estructura y el mapa más probables. La representación de la estructura del entorno se basa en un enfoque jerárquico, con diferentes niveles de abstracción para los distintos elementos geométricos que puedan describirlo. Se llevaron a cabo diversos experimentos para mostrar la versatilidad y el buen funcionamiento del método propuesto. En el segundo marco, el usuario puede definir diferentes modelos de estructura para el entorno mediante grupos de restricciones y energías locales entre puntos vecinos de un conjunto de datos del mismo. El grupo de restricciones que se aplica a cada grupo de puntos depende de la topología, que es inferida por el propio sistema. De este modo, se pueden incorporar nuevos modelos genéricos de estructura para el entorno con gran flexibilidad y facilidad. Se realizaron distintos experimentos para demostrar la flexibilidad y los buenos resultados del enfoque propuesto. Abstract Most human designed environments present specific geometrical characteristics. In them, it is easy to find polygonal, rectangular and circular shapes, with a series of typical relations between different elements of the environment. Introducing this kind of knowledge in the mapping process of mobile robots can notably improve the quality and accuracy of the resulting maps. It can also make them more suitable for higher level reasoning applications. When mapping is formulated in a Bayesian probabilistic framework, a complete specification of the problem requires considering a prior for the environment. The prior over the structure of the environment can be applied in several ways; this dissertation presents two different frameworks, one using a feature based approach and another one employing a dense representation close to the measurements space. A feature based approach implicitly imposes a prior for the environment. In this sense, feature based graph SLAM was a first step towards a new mapping solution for structured scenarios. In the first framework, the prior is inferred by the system from a wide collection of feature based priors, following an Expectation-Maximization approach to obtain the most probable structure and the most probable map. The representation of the structure of the environment is based on a hierarchical model with different levels of abstraction for the geometrical elements describing it. Various experiments were conducted to show the versatility and the good performance of the proposed method. In the second framework, different priors can be defined by the user as sets of local constraints and energies for consecutive points in a range scan from a given environment. The set of constraints applied to each group of points depends on the topology, which is inferred by the system. This way, flexible and generic priors can be incorporated very easily. Several tests were carried out to demonstrate the flexibility and the good results of the proposed approach.
Resumo:
In this work, novel imaging designs with a single optical surface (either refractive or reflective) are presented. In some of these designs, both object and image shapes are given but mapping from object to image is obtained as a result of the design. In other designs, not only the mapping is obtained in the design process, but also the shape of the object is found. In the examples considered, the image is virtual and located at infinity and is seen from known pupil, which can emulate a human eye. In the first introductory part, 2D designs have been done using three different design methods: a SMS design, a compound Cartesian oval surface, and a differential equation method for the limit case of small pupil. At the point-size pupil limit, it is proven that these three methods coincide. In the second part, previous 2D designs are extended to 3D by rotation and the astigmatism of the image has been studied. As an advanced variation, the differential equation method is used to provide the freedom to control the tangential rays and sagittal rays simultaneously. As a result, designs without astigmatism (at the small pupil limit) on a curved object surface have been obtained. Finally, this anastigmatic differential equation method has been extended to 3D for the general case, in which freeform surfaces are designed.
Resumo:
he inclusion of environmental care data in the decision-making process should be based on the results obtained after scienti?cally evaluating different environmental variables. Herein, a European landscape geographic model is presented. This landscape map would allow the environmental care variable ?visual landscape?, along with other information related to vegetation, geology, soils, cultural variables, etc., to be integrated into the planning process. The methodology used is not new since it has already been tested in Spain by the authors. Nevertheless, the model was adapted to cope with the much more extensive territory of the European Union. This meant dealing with computational dif?culties, and a lack of information. The result of this work is a raster map (100 m cell size) that evaluates landscape quality in Europe by dividing the area into seven visual quality classes. This is a practical tool for territorial development that will facilitate the environmental assessment of plans, such as infrastructure plans, within a strategic pan-European framework.
Resumo:
Si no tenemos en cuenta posibles procesos subyacentes con significado físico, químico, económico, etc., podemos considerar una serie temporal como un mero conjunto ordenado de valores y jugar con él algún inocente juego matemático como transformar dicho conjunto en otro objeto con la ayuda de una operación matemática para ver qué sucede: qué propiedades del conjunto original se conservan, cuáles se transforman y cómo, qué podemos decir de alguna de las dos representaciones matemáticas del objeto con sólo atender a la otra... Este ejercicio sería de cierto interés matemático por sí solo. Ocurre, además, que las series temporales son un método universal de extraer información de sistemas dinámicos en cualquier campo de la ciencia. Esto hace ganar un inesperado interés práctico al juego matemático anteriormente descrito, ya que abre la posibilidad de analizar las series temporales (vistas ahora como evolución temporal de procesos dinámicos) desde una nueva perspectiva. Hemos para esto de asumir la hipótesis de que la información codificada en la serie original se conserva de algún modo en la transformación (al menos una parte de ella). El interés resulta completo cuando la nueva representación del objeto pertencece a un campo de la matemáticas relativamente maduro, en el cual la información codificada en dicha representación puede ser descodificada y procesada de manera efectiva. ABSTRACT Disregarding any underlying process (and therefore any physical, chemical, economical or whichever meaning of its mere numeric values), we can consider a time series just as an ordered set of values and play the naive mathematical game of turning this set into a different mathematical object with the aids of an abstract mapping, and see what happens: which properties of the original set are conserved, which are transformed and how, what can we say about one of the mathematical representations just by looking at the other... This exercise is of mathematical interest by itself. In addition, it turns out that time series or signals is a universal method of extracting information from dynamical systems in any field of science. Therefore, the preceding mathematical game gains some unexpected practical interest as it opens the possibility of analyzing a time series (i.e. the outcome of a dynamical process) from an alternative angle. Of course, the information stored in the original time series should be somehow conserved in the mapping. The motivation is completed when the new representation belongs to a relatively mature mathematical field, where information encoded in such a representation can be effectively disentangled and processed. This is, in a nutshell, a first motivation to map time series into networks.
Resumo:
Abstract The development of cognitive robots needs a strong “sensorial” support which should allow it to perceive the real world for interacting with it properly. Therefore the development of efficient visual-processing software to be equipped in effective artificial agents is a must. In this project we study and develop a visual-processing software that will work as the “eyes” of a cognitive robot. This software performs a three-dimensional mapping of the robot’s environment, providing it with the essential information required to make proper decisions during its navigation. Due to the complexity of this objective we have adopted the Scrum methodology in order to achieve an agile development process, which has allowed us to correct and improve in a fast way the successive versions of the product. The present project is structured in Sprints, which cover the different stages of the software development based on the requirements imposed by the robot and its real necessities. We have initially explored different commercial devices oriented to the acquisition of the required visual information, adopting the Kinect Sensor camera (Microsoft) as the most suitable option. Later on, we have studied the available software to manage the obtained visual information as well as its integration with the robot’s software, choosing the high-level platform Matlab as the common nexus to join the management of the camera, the management of the robot and the implementation of the behavioral algorithms. During the last stages the software has been developed to include the fundamental functionalities required to process the real environment, such as depth representation, segmentation, and clustering. Finally the software has been optimized to exhibit real-time processing and a suitable performance to fulfill the robot’s requirements during its operation in real situations.
Resumo:
We are witnessing a fundamental transformation in how Internet of Things (IoT) is having an impact on the experience users have with data-driven devices, smart appliances, and connected products. The experience of any place is commonly defined as the result of a series of user engagements with a surrounding place in order to carry out daily activities (Golledge, 2002). Knowing about users? experiences becomes vital to the process of designing a map. In the near future, a user will be able to interact directly with any IoT device placed in his surrounding place and very little is known on what kinds of interactions and experiences a map might offer (Roth, 2015). The main challenge is to develop an experience design process to devise maps capable of supporting different user experience dimensions such as cognitive, sensory-physical, affective, and social (Tussyadiah and Zach, 2012). For example, in a smart city of the future, the IoT devices allowing a multimodal interaction with a map could help tourists in the assimilation of their knowledge about points of interest (cognitive experience), their association of sounds and smells to these places (sensory-physical experience), their emotional connection to them (affective experience) and their relationships with other nearby tourists (social experience). This paper aims to describe a conceptual framework for developing a Mapping Experience Design (MXD) process for building maps for smart connected places of the future. Our MXD process is focussed on the cognitive dimension of an experience in which a person perceives a place as a "living entity" that uses and feeds through his experiences. We want to help people to undergo a meaningful experience of a place through mapping what is being communicated during their interactions with the IoT devices situated in this place. Our purpose is to understand how maps can support a person?s experience in making better decisions in real-time.
Resumo:
This paper forms part of Lukasz Mikolajczyk's PhD dissertation, which is supervised by Karen Milek
Resumo:
Multiple-complete-digest mapping is a DNA mapping technique based on complete-restriction-digest fingerprints of a set of clones that provides highly redundant coverage of the mapping target. The maps assembled from these fingerprints order both the clones and the restriction fragments. Maps are coordinated across three enzymes in the examples presented. Starting with yeast artificial chromosome contigs from the 7q31.3 and 7p14 regions of the human genome, we have produced cosmid-based maps spanning more than one million base pairs. Each yeast artificial chromosome is first subcloned into cosmids at a redundancy of ×15–30. Complete-digest fragments are electrophoresed on agarose gels, poststained, and imaged on a fluorescent scanner. Aberrant clones that are not representative of the underlying genome are rejected in the map construction process. Almost every restriction fragment is ordered, allowing selection of minimal tiling paths with clone-to-clone overlaps of only a few thousand base pairs. These maps demonstrate the practicality of applying the experimental and software-based steps in multiple-complete-digest mapping to a target of significant size and complexity. We present evidence that the maps are sufficiently accurate to validate both the clones selected for sequencing and the sequence assemblies obtained once these clones have been sequenced by a “shotgun” method.
Resumo:
Moderate resolution remote sensing data, as provided by MODIS, can be used to detect and map active or past wildfires from daily records of suitable combinations of reflectance bands. The objective of the present work was to develop and test simple algorithms and variations for automatic or semiautomatic detection of burnt areas from time series data of MODIS biweekly vegetation indices for a Mediterranean region. MODIS-derived NDVI 250m time series data for the Valencia region, East Spain, were subjected to a two-step process for the detection of candidate burnt areas, and the results compared with available fire event records from the Valencia Regional Government. For each pixel and date in the data series, a model was fitted to both the previous and posterior time series data. Combining drops between two consecutive points and 1-year average drops, we used discrepancies or jumps between the pre and post models to identify seed pixels, and then delimitated fire scars for each potential wildfire using an extension algorithm from the seed pixels. The resulting maps of the detected burnt areas showed a very good agreement with the perimeters registered in the database of fire records used as reference. Overall accuracies and indices of agreement were very high, and omission and commission errors were similar or lower than in previous studies that used automatic or semiautomatic fire scar detection based on remote sensing. This supports the effectiveness of the method for detecting and mapping burnt areas in the Mediterranean region.
Resumo:
This layer is a georeferenced raster image of the United States Defense Mapping Agency (DMA) Series Z724, Burundi, 1:50,000 Topographic Line Map (TLM) Series sheet map entitled: Gakara. Printed in: 1994. Covers portions of Gakara region, Burundi. Sheet: 4673-I. Edition statement: Ed. 1 - DMA. The image inside the map neatline is georeferenced to the surface of the earth and fit to World Geodetic System (1984) coordinates. All map collar information is also available as part of the raster image. Burundi 1:50:000 Series Z724 maps are in English and French (legends also include Rundi). Each source map in the series is printed in color at a scale of 1:50,000. Series source sheets were published in 1994-1995 by the United States Defense Mapping Agency, Hydrographic/Topographic Center. The source map was scanned and georeferenced for Harvard University's Center for Geographic Analysis' AfricaMap project by East View Cartographic. Individual TLM sheets covering Burundi (40 sheets in total) were selected from the TLM worldwide series. DMA Topographic Line Map series maps are typical topographic maps portraying both natural and manmade features. They show and name works of nature, such as mountains, valleys, lakes, rivers, vegetation, etc. They also identify the principal works of humans, such as roads, railroads, boundaries, transmission lines, major buildings, etc. Relief is shown with standard contour intervals of 20 meters, with some sheets having supplemental meter contours, form lines, hachures, shading, and/or spot heights. Depths shown by bathymetric isolines. Please pay close attention to map collar information on projections, spheroid, compilation dates, legend information, and keys to grid numbering and other numbers which appear inside the neatline.
Bubanza region, Burundi, 1994, Defense Mapping Agency (DMA) Series Z724, Sheet 4674-I (Raster Image)
Resumo:
This layer is a georeferenced raster image of the United States Defense Mapping Agency (DMA) Series Z724, Burundi, 1:50,000 Topographic Line Map (TLM) Series sheet map entitled: Bubanza. Printed in: 1994. Covers portions of Bubanza region, Burundi. Sheet: 4674-I. Edition statement: Ed. 1 - DMA. The image inside the map neatline is georeferenced to the surface of the earth and fit to World Geodetic System (1984) coordinates. All map collar information is also available as part of the raster image. Burundi 1:50:000 Series Z724 maps are in English and French (legends also include Rundi). Each source map in the series is printed in color at a scale of 1:50,000. Series source sheets were published in 1994-1995 by the United States Defense Mapping Agency, Hydrographic/Topographic Center. The source map was scanned and georeferenced for Harvard University's Center for Geographic Analysis' AfricaMap project by East View Cartographic. Individual TLM sheets covering Burundi (40 sheets in total) were selected from the TLM worldwide series. DMA Topographic Line Map series maps are typical topographic maps portraying both natural and manmade features. They show and name works of nature, such as mountains, valleys, lakes, rivers, vegetation, etc. They also identify the principal works of humans, such as roads, railroads, boundaries, transmission lines, major buildings, etc. Relief is shown with standard contour intervals of 20 meters, with some sheets having supplemental meter contours, form lines, hachures, shading, and/or spot heights. Depths shown by bathymetric isolines. Please pay close attention to map collar information on projections, spheroid, compilation dates, legend information, and keys to grid numbering and other numbers which appear inside the neatline.
Resumo:
This layer is a georeferenced raster image of the United States Defense Mapping Agency (DMA) Series Z724, Burundi, 1:50,000 Topographic Line Map (TLM) Series sheet map entitled: Bujumbura. Printed in: 1994. Covers portions of Bujumbura region, Burundi. Sheet: 4674-II. Edition statement: Ed. 1 - DMA. The image inside the map neatline is georeferenced to the surface of the earth and fit to World Geodetic System (1984) coordinates. All map collar information is also available as part of the raster image. Burundi 1:50:000 Series Z724 maps are in English and French (legends also include Rundi). Each source map in the series is printed in color at a scale of 1:50,000. Series source sheets were published in 1994-1995 by the United States Defense Mapping Agency, Hydrographic/Topographic Center. The source map was scanned and georeferenced for Harvard University's Center for Geographic Analysis' AfricaMap project by East View Cartographic. Individual TLM sheets covering Burundi (40 sheets in total) were selected from the TLM worldwide series. DMA Topographic Line Map series maps are typical topographic maps portraying both natural and manmade features. They show and name works of nature, such as mountains, valleys, lakes, rivers, vegetation, etc. They also identify the principal works of humans, such as roads, railroads, boundaries, transmission lines, major buildings, etc. Relief is shown with standard contour intervals of 20 meters, with some sheets having supplemental meter contours, form lines, hachures, shading, and/or spot heights. Depths shown by bathymetric isolines. Please pay close attention to map collar information on projections, spheroid, compilation dates, legend information, and keys to grid numbering and other numbers which appear inside the neatline.