971 resultados para proceeding commenced by originating application
Resumo:
The feasibility of employing classical electrophoresis theory to determine the net charge (valence) of proteins by capillary zone electrophoresis is illustrated in this paper. An outline of a procedure to facilitate the interpretation of mobility measurements is demonstrated by its application to a published mobility measurement for Staphylococcal nuclease at pH 8.9 that had been obtained by capillary zone electrophoresis. The significantly higher valence of +7.5 (cf. 5.6 from the same series of measurements) that has been reported on the basis of a charge ladder approach for charge determination signifies the likelihood that the latter generic approach may be prone to error arising from nonconformity of the experimental system with an inherent assumption that chemical modification or mutation of amino acid residues has no effect on the overall three-dimensional size and shape of the protein. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
protein modulation of neuronal nicotinic acetylcholine receptor ( nAChR) channels in rat intrinsic cardiac ganglia was examined using dialyzed whole-cell and excised membrane patch-recording configurations. Cell dialysis with GTP gamma S increased the agonist affinity of nAChRs, resulting in a potentiation of nicotine-evoked whole-cell currents at low concentrations. ACh- and nicotine-evoked current amplitudes were increased approximately twofold in the presence of GTP gamma S. In inside-out membrane patches, the open probability (NPo) of nAChR-mediated unitary currents was reversibly increased fourfold after bath application of 0.2mM GTP gamma S relative to control but was unchanged in the presence of GDP gamma S. The modulation of nAChR-mediated whole- cell currents was agonist specific; currents evoked by the cholinergic agonists ACh, nicotine, and 1,1-dimethyl-4-phenylpiperazinium iodide, but not cytisine or choline, were potentiated in the presence of GTP gamma S. The direct interaction between G-protein subunits and nAChRs was examined by bath application of either G(o)alpha or G beta gamma subunits to inside-out membrane patches and in glutathione S-transferase pull-down and coimmunoprecipitation experiments. Bath application of 50 nM G beta gamma increased the open probability of ACh- activated single-channel currents fivefold, whereas G(o)alpha( 50 nM) produced no significant increase in NPo. Neuronal nAChR subunits alpha 3-alpha 5 and alpha 2 exhibited a positive interaction with G(o)alpha and G beta gamma, whereas beta 4 and alpha 7 failed to interact with either of the G-protein subunits. These results provide evidence for a direct interaction between nAChR and G-protein subunits, underlying the increased open probability of ACh-activated single-channel currents and potentiation of nAChR-mediated whole-cell currents in parasympathetic neurons of rat intrinsic cardiac ganglia.
Resumo:
Piggery pond sludge (PPS) was applied, as-collected (Wet PPS) and following stockpiling for 12 months ( Stockpiled PPS), to a sandy Sodosol and clay Vertosol at sites on the Darling Downs of Queensland. Laboratory measures of N availability were carried out on unamended and PPS-amended soils to investigate their value in estimating supplementary N needs of crops in Australia's northern grains region. Cumulative net N mineralised from the long-term ( 30 weeks) leached aerobic incubation was described by a first-order single exponential model. The mineralisation rate constant (0.057/week) was not significantly different between Control and PPS treatments or across soil types, when the amounts of initial mineral N applied in PPS treatments were excluded. Potentially mineralisable N (N-o) was significantly increased by the application of Wet PPS, and increased with increasing rate of application. Application of Wet PPS significantly increased the total amount of inorganic N leached compared with the Control treatments. Mineral N applied in Wet PPS contributed as much to the total mineral N status of the soil as did that which mineralised over time from organic N. Rates of CO2 evolution during 30 weeks of aerobic leached incubation indicated that the Stockpiled PPS was more stabilised (19-28% of applied organic C mineralised) than the Wet PPS (35-58% of applied organic C mineralised), due to higher lignin content in the former. Net nitrate-N produced following 12 weeks of aerobic non-leached incubation was highly correlated with net nitrate-N leached during 12 weeks of aerobic incubation (R-2 = 0.96), although it was
Resumo:
We present the first characterization of the mechanical properties of lysozyme films formed by self-assembly at the air-water interface using the Cambridge interfacial tensiometer (CIT), an apparatus capable of subjecting protein films to a much higher level of extensional strain than traditional dilatational techniques. CIT analysis, which is insensitive to surface pressure, provides a direct measure of the extensional stress-strain behavior of an interfacial film without the need to assume a mechanical model (e.g., viscoelastic), and without requiring difficult-to-test assumptions regarding low-strain material linearity. This testing method has revealed that the bulk solution pH from which assembly of an interfacial lysozyme film occurs influences the mechanical properties of the film more significantly than is suggested by the observed differences in elastic moduli or surface pressure. We have also identified a previously undescribed pH dependency in the effect of solution ionic strength on the mechanical strength of the lysozyme films formed at the air-water interface. Increasing solution ionic strength was found to increase lysozyme film strength when assembly occurred at pH 7, but it caused a decrease in film strength at pH 11, close to the pI of lysozyme. This result is discussed in terms of the significant contribution made to protein film strength by both electrostatic interactions and the hydrophobic effect. Washout experiments to remove protein from the bulk phase have shown that a small percentage of the interfacially adsorbed lysozyme molecules are reversibly adsorbed. Finally, the washout tests have probed the role played by additional adsorption to the fresh interface formed by the application of a large strain to the lysozyme film and have suggested the movement of reversibly bound lysozyme molecules from a subinterfacial layer to the interface.
Resumo:
In analysing manufacturing systems, for either design or operational reasons, failure to account for the potentially significant dynamics could produce invalid results. There are many analysis techniques that can be used, however, simulation is unique in its ability to assess detailed, dynamic behaviour. The use of simulation to analyse manufacturing systems would therefore seem appropriate if not essential. Many simulation software products are available but their ease of use and scope of application vary greatly. This is illustrated at one extreme by simulators which offer rapid but limited application whilst at the other simulation languages which are extremely flexible but tedious to code. Given that a typical manufacturing engineer does not posses in depth programming and simulation skills then the use of simulators over simulation languages would seem a more appropriate choice. Whilst simulators offer ease of use their limited functionality may preclude their use in many applications. The construction of current simulators makes it difficult to amend or extend the functionality of the system to meet new challenges. Some simulators could even become obsolete as users, demand modelling functionality that reflects the latest manufacturing system design and operation concepts. This thesis examines the deficiencies in current simulation tools and considers whether they can be overcome by the application of object-oriented principles. Object-oriented techniques have gained in popularity in recent years and are seen as having the potential to overcome any of the problems traditionally associated with software construction. There are a number of key concepts that are exploited in the work described in this thesis: the use of object-oriented techniques to act as a framework for abstracting engineering concepts into a simulation tool and the ability to reuse and extend object-oriented software. It is argued that current object-oriented simulation tools are deficient and that in designing such tools, object -oriented techniques should be used not just for the creation of individual simulation objects but for the creation of the complete software. This results in the ability to construct an easy to use simulator that is not limited by its initial functionality. The thesis presents the design of an object-oriented data driven simulator which can be freely extended. Discussion and work is focused on discrete parts manufacture. The system developed retains the ease of use typical of data driven simulators. Whilst removing any limitation on its potential range of applications. Reference is given to additions made to the simulator by other developers not involved in the original software development. Particular emphasis is put on the requirements of the manufacturing engineer and the need for Ihe engineer to carrv out dynamic evaluations.
Resumo:
Simultaneous conversion of the two orthogonal phase components of an optical input to different output frequencies has been demonstrated by simulation and experiment. A single stage of four-wave mixing between the input signal and four pumps derived from a frequency comb was employed. The nonlinear device was a semiconductor optical amplifier, which provided overall signal gain and sufficient contrast for phase sensitive signal processing. The decomposition of a quadrature phase-shift keyed signal into a pair of binary phase-shift keyed outputs at different frequencies was also demonstrated by simulation.
Resumo:
The rapid growth of virtualized data centers and cloud hosting services is making the management of physical resources such as CPU, memory, and I/O bandwidth in data center servers increasingly important. Server management now involves dealing with multiple dissimilar applications with varying Service-Level-Agreements (SLAs) and multiple resource dimensions. The multiplicity and diversity of resources and applications are rendering administrative tasks more complex and challenging. This thesis aimed to develop a framework and techniques that would help substantially reduce data center management complexity.^ We specifically addressed two crucial data center operations. First, we precisely estimated capacity requirements of client virtual machines (VMs) while renting server space in cloud environment. Second, we proposed a systematic process to efficiently allocate physical resources to hosted VMs in a data center. To realize these dual objectives, accurately capturing the effects of resource allocations on application performance is vital. The benefits of accurate application performance modeling are multifold. Cloud users can size their VMs appropriately and pay only for the resources that they need; service providers can also offer a new charging model based on the VMs performance instead of their configured sizes. As a result, clients will pay exactly for the performance they are actually experiencing; on the other hand, administrators will be able to maximize their total revenue by utilizing application performance models and SLAs. ^ This thesis made the following contributions. First, we identified resource control parameters crucial for distributing physical resources and characterizing contention for virtualized applications in a shared hosting environment. Second, we explored several modeling techniques and confirmed the suitability of two machine learning tools, Artificial Neural Network and Support Vector Machine, to accurately model the performance of virtualized applications. Moreover, we suggested and evaluated modeling optimizations necessary to improve prediction accuracy when using these modeling tools. Third, we presented an approach to optimal VM sizing by employing the performance models we created. Finally, we proposed a revenue-driven resource allocation algorithm which maximizes the SLA-generated revenue for a data center.^
Resumo:
The majority of electrode materials in batteries and related electrochemical energy storage devices are fashioned into slurries via the addition of a conductive additive and a binder. However, aggregation of smaller diameter nanoparticles in current generation electrode compositions can result in non-homogeneous active materials. Inconsistent slurry formulation may lead to inconsistent electrical conductivity throughout the material, local variations in electrochemical response, and the overall cell performance. Here we demonstrate the hydrothermal preparation of Ag nanoparticle (NP) decorated α-AgVO3 nanowires (NWs) and their conversion to tunnel structured β-AgVO3 NWs by annealing to form a uniform blend of intercalation materials that are well connected electrically. The synthesis of nanostructures with chemically bound conductive nanoparticles is an elegant means to overcome the intrinsic issues associated with electrode slurry production, as wire-to-wire conductive pathways are formed within the overall electrode active mass of NWs. The conversion from α-AgVO3 to β-AgVO3 is explained in detail through a comprehensive structural characterization. Meticulous EELS analysis of β-AgVO3 NWs offers insight into the true β-AgVO3 structure and how the annealing process facilitates a higher surface coverage of Ag NPs directly from ionic Ag content within the α-AgVO3 NWs. Variations in vanadium oxidation state across the surface of the nanowires indicate that the β-AgVO3 NWs have a core–shell oxidation state structure, and that the vanadium oxidation state under the Ag NP confirms a chemically bound NP from reduction of diffused ionic silver from the α-AgVO3 NWs core material. Electrochemical comparison of α-AgVO3 and β-AgVO3 NWs confirms that β-AgVO3 offers improved electrochemical performance. An ex situ structural characterization of β-AgVO3 NWs after the first galvanostatic discharge and charge offers new insight into the Li+ reaction mechanism for β-AgVO3. Ag+ between the van der Waals layers of the vanadium oxide is reduced during discharge and deposited as metallic Ag, the vacant sites are then occupied by Li+.
Resumo:
Graphics Processing Units (GPUs) are becoming popular accelerators in modern High-Performance Computing (HPC) clusters. Installing GPUs on each node of the cluster is not efficient resulting in high costs and power consumption as well as underutilisation of the accelerator. The research reported in this paper is motivated towards the use of few physical GPUs by providing cluster nodes access to remote GPUs on-demand for a financial risk application. We hypothesise that sharing GPUs between several nodes, referred to as multi-tenancy, reduces the execution time and energy consumed by an application. Two data transfer modes between the CPU and the GPUs, namely concurrent and sequential, are explored. The key result from the experiments is that multi-tenancy with few physical GPUs using sequential data transfers lowers the execution time and the energy consumed, thereby improving the overall performance of the application.
Resumo:
Glycogen Synthase Kinase 3 (GSK3), a serine/threonine kinase initially characterized in the context of glycogen metabolism, has been repeatedly realized as a multitasking protein that can regulate numerous cellular events in both metazoa and protozoa. I recently found GSK3 plays a role in regulating chemotaxis, a guided cell movement in response to an external chemical gradient, in one of the best studied model systems for chemotaxis - Dictyostelium discoideum. It was initially found that comparing to wild type cells, gsk3- cells showed aberrant chemotaxis with a significant decrease in both speed and chemotactic indices. In Dictyostelium, phosphatidylinositol 3,4,5-triphosphate (PIP3) signaling is one of the best characterized pathways that regulate chemotaxis. Molecular analysis uncovered that gsk3- cells suffer from high basal level of PIP3, the product of PI3K. Upon chemoattractant cAMP stimulation, wild type cells displayed a transient increase in the level of PIP3. In contrast, gsk3- cells exhibited neither significant increase nor adaptation. On the other hand, no aberrant dynamic of phosphatase and tensin homolog (PTEN), which antagonizes PI3K function, was observed. Upon membrane localization of PI3K, PI3K become activated by Ras, which will in turn further facilitate membrane localization of PI3K in an F-Actin dependent manner. The gsk3- cells treated with F-Actin inhibitor Latrunculin-A showed no significant difference in the PIP3 level. I also showed GSK3 affected the phosphorylation level of the localization domain of PI3K1 (PI3K1-LD). PI3K1-LD proteins from gsk3- cells displayed less phosphorylation on serine residues compared to that from wild type cells. When the potential GSK3 phosphorylation sites of PI3K1-LD were substituted with aspartic acids (Phosphomimetic substitution), its membrane localization was suppressed in gsk3- cells. When these serine residues of PI3K1-LD were substituted with alanine, aberrantly high level of membrane localization of the PI3K1-LD was monitored in wild type cells. Wild type, phosphomimetic, and alanine substitution of PI3K1-LD fused with GFP proteins also displayed identical localization behavior as suggested by the cell fraction studies. Lastly, I identified that all three potential GSK3 phosphorylation sites on PI3K1-LD could be phosphorylated in vitro by GSK3.
Resumo:
The rapid growth of virtualized data centers and cloud hosting services is making the management of physical resources such as CPU, memory, and I/O bandwidth in data center servers increasingly important. Server management now involves dealing with multiple dissimilar applications with varying Service-Level-Agreements (SLAs) and multiple resource dimensions. The multiplicity and diversity of resources and applications are rendering administrative tasks more complex and challenging. This thesis aimed to develop a framework and techniques that would help substantially reduce data center management complexity. We specifically addressed two crucial data center operations. First, we precisely estimated capacity requirements of client virtual machines (VMs) while renting server space in cloud environment. Second, we proposed a systematic process to efficiently allocate physical resources to hosted VMs in a data center. To realize these dual objectives, accurately capturing the effects of resource allocations on application performance is vital. The benefits of accurate application performance modeling are multifold. Cloud users can size their VMs appropriately and pay only for the resources that they need; service providers can also offer a new charging model based on the VMs performance instead of their configured sizes. As a result, clients will pay exactly for the performance they are actually experiencing; on the other hand, administrators will be able to maximize their total revenue by utilizing application performance models and SLAs. This thesis made the following contributions. First, we identified resource control parameters crucial for distributing physical resources and characterizing contention for virtualized applications in a shared hosting environment. Second, we explored several modeling techniques and confirmed the suitability of two machine learning tools, Artificial Neural Network and Support Vector Machine, to accurately model the performance of virtualized applications. Moreover, we suggested and evaluated modeling optimizations necessary to improve prediction accuracy when using these modeling tools. Third, we presented an approach to optimal VM sizing by employing the performance models we created. Finally, we proposed a revenue-driven resource allocation algorithm which maximizes the SLA-generated revenue for a data center.
Resumo:
This paper seeks to address the widespread call in the literature for the cross-cultural examination ( and validation) of accepted concepts within consumer behaviour, such as consumer risk perceptions and information search. The findings of the study provide support for a number of accepted relationships, whilst identifying distinct cross cultural differences in external information search and willingness to buy genetically modified (GM) food products by consumers.
Resumo:
This study investigates variation in IT professionals' experience of ethics with a view to enhancing their formation and support. This is explored through an examination of the experience of IT, IT professional ethics and IT professional ethics education. The study's principal contribution is the empirical study and description of IT professionals' experience of ethics. The empirical phase is preceded by a review of conceptions of IT and followed by an application of the findings to IT education. The study's empirical findings are based on 30 semi-structured interviews with IT professionals who represent a wide demographic, experience and IT sub-discipline range. Their experience of ethics is depicted as five citizenships: Citizenship of my world, Citizenship of the corporate world, Citizenship of a shared world, Citizenship of the client's world and Citizenship of the wider world. These signify an expanding awareness, which progressively accords rights to others and defines responsibility in terms of others. The empirical findings inform a Model of Ethical IT. This maps an IT professional space increasingly oriented towards others. Such a model provides a conceptual tool, available to prompt discussion and reflection, and which may be employed in pursuing formation aimed at experiential change. Its usefulness for the education of IT professionals with respect to ethics is explored. The research approach employed in this study is phenomenography. This method seeks to elicit and represent variation of experience. It understands experience as a relationship between a subject (IT professionals) and an object (ethics), and describes this relationship in terms of its foci and boundaries. The study's findings culminate in three observations, that change is indicated in the formation and support of IT professionals in: 1. IT professionals' experience of their discipline, moving towards a focus on information users; 2. IT professionals' experience of professional ethics, moving towards the adoption of other-centred attitudes; and 3. IT professionals' experience of professional development, moving towards an emphasis on a change in lived experience. Based on these results, employers, educators and professional bodies may want to evaluate how they approach professional formation and support, if they aim to promote a comprehensive awareness of ethics in IT professionals.
Resumo:
Brisbane Water (BW), a commercialised business arm of Brisbane City Council (BCC) entered into an alliance with a number of organisations from the private sector in order to design, construct, commission and undertake upgrades to three existing wastewater treatment plants located at Sandgate, Oxley Creek, and Wacol in Brisbane. The alliance project is called the Brisbane Water Environmental Alliance (BWEA). This report details the efforts of a team of researchers from the School of Management at Queensland University of Technology to investigate this alliance. This is the second report on this project, and is called Stage 2 of the research. At the time that Stage 2 of the research project was conducted, the BWEA project was nearing completion with a further 8 months remaining before project completion. The aim of this report is to explore individuals’ perceptions of the effectiveness and functioning of the BWEA project in the latter stages of the project. The second aim of this report is to analyse the longitudinal findings of this research project by integrating the findings from Stage 1 and Stage 2 of the project. This long-term analysis of the functioning and effectiveness of the alliance is important because at the current time, researchers have little knowledge of the group developmental processes that occur in large-scale alliances over time. Stage 2 of this research project has a number of aims including assessing performance of the BWEA project from the point of view of a range of stakeholders including the alliance board and alliance management team, alliance staff, and key stakeholders from the client organisation (Brisbane Water). Data were collected using semi-structured interviews with 18 individuals including two board members, one external facilitator, and four staff members from the client organisation. Analysis involved coding the interview transcripts in terms of the major issues that were reported by interviewees.
Resumo:
Major infrastructure assets are often governed by a mix of public and private organizations, each fulfilling a specific and separate role i.e. policy, ownership, operation or maintenance. This mix of entities is a legacy of Public Choice Theory influenced NPM reforms of the late 20th century. The privatization of the public sector has resulted in agency theory based ‘self-interest’ relationships and governance arrangements for major infrastructure assets which emphasize economic efficiency but which do not do not advance non-economic public values and the collective Public Interest. The community is now requiring that governments fulfill their stewardship role of also satisfying non-economic public values such as sustainability and intergenerational responsibility. In the 21st century governance arrangements which minimize individual self-interest alone and look to also pursue the interests of other stakeholders have emerged. Relational contracts, Public-Private Partnerships (PPP’s) and hybrid mixes of organizations from the state, market and network modes (Keast et al 2006) provide options for governance which better meet the interests of contractors, government and the community there is emerging a body of research which extends the consideration of the immediate governance configuration to the metagovernance environment constituted by hierarchy, regulation, industry standards, trust, culture and values. Stewardship theory has reemerged as a valuable aid in the understanding of the features of governance configurations which establish relationships between principal and agent which maximize the agent acting in the interests of the principal, even to the detriment of the agent. This body of literature suggests that an improved stewardship outcome from infrastructure governance configurations can be achieved by the application of the emerging options as to the immediate governance configuration, and the surrounding metagovernance environment. Stewardship theory provides a framework for the design of the relationships within that total governance environment, focusing on the achievement of a better, complete stewardship outcome. This paper explores the directions future research might take in seeking to improve the understanding of the design of the governance of major, critical infrastructure assets.