911 resultados para potential land productivity
Resumo:
In life cycle assessment studies, greenhouse gas (GHG) emissions from direct land-use change have been estimated to make a significant contribution to the global warming potential of agricultural products. However, these estimates have a high uncertainty due to the complexity of data requirements and difficulty in attribution of land-use change. This paper presents estimates of GHG emissions from direct land-use change from native woodland to grazing land for two beef production regions in eastern Australia, which were the subject of a multi-impact life cycle assessment study for premium beef production. Spatially- and temporally consistent datasets were derived for areas of forest cover and biomass carbon stocks using published remotely sensed tree-cover data and regionally applicable allometric equations consistent with Australia's national GHG inventory report. Standard life cycle assessment methodology was used to estimate GHG emissions and removals from direct land-use change attributed to beef production. For the northern-central New South Wales region of Australia estimates ranged from a net emission of 0.03 t CO2-e ha-1 year-1 to net removal of 0.12 t CO2-e ha-1 year-1 using low and high scenarios, respectively, for sequestration in regrowing forests. For the same period (1990-2010), the study region in southern-central Queensland was estimated to have net emissions from land-use change in the range of 0.45-0.25 t CO2-e ha-1 year-1. The difference between regions reflects continuation of higher rates of deforestation in Queensland until strict regulation in 2006 whereas native vegetation protection laws were introduced earlier in New South Wales. On the basis of liveweight produced at the farm-gate, emissions from direct land-use change for 1990-2010 were comparable in magnitude to those from other on-farm sources, which were dominated by enteric methane. However, calculation of land-use change impacts for the Queensland region for a period starting 2006, gave a range from net emissions of 0.11 t CO2-e ha-1 year-1 to net removals of 0.07 t CO2-e ha-1 year-1. This study demonstrated a method for deriving spatially- and temporally consistent datasets to improve estimates for direct land-use change impacts in life cycle assessment. It identified areas of uncertainty, including rates of sequestration in woody regrowth and impacts of land-use change on soil carbon stocks in grazed woodlands, but also showed the potential for direct land-use change to represent a net sink for GHG.
Resumo:
With the level of urbanization in China now exceeding 50%, its collective rural land system is under increasing pressure, creating conditions in which there is increasing conflict between the efficient use of land for agricultural purposes and its retention as security for the rural population. This paper first examines the fundamental nature of China's collective land system by analyzing the collectivization history of China, then provides a comprehensive appraisal of the strengths and weaknesses of the collective land system's role in history and the challenges it faces in modern times. The main changes needed for the current collective system are identified as (1) the establishment of a new transfer mechanism for potential collective construction land, (2) the completion of land rights verification and consolidation work, and (3) the endowment of villagers with more rights to enjoy the distribution of land incremental value. The paper's main contribution is to question the relevance of collective rural land system in contemporary China, where a shift is now taking place from one of pure economic development to one involving more social concerns, and propose potential viable amendments to integrate the need for both perspectives.
Resumo:
Forests play a critical role in addressing climate change concerns in the broader context of global change and sustainable development. Forests are linked to climate change in three ways. i) Forests are a source of greenhouse gas (GHG) emissions: ii) Forests offer mitigation opportunities to stabilise GHG concentrations: iii) Forests are impacted by climate change. This paper reviews studies related to climate change and forests in India: first, the studies estimating carbon inventory for the Indian land use change and forestry sector (LUCF), then the different models and mitigation potential estimates for the LUCF sector in India. Finally it reviews the studies on the impact of climate change on forest ecosystems in India, identifying the implications for net primary productivity and bio-diversity. The paper highlights data, modelling and research gaps relevant to the GHG inventory, mitigation potential and vulnerability and impact assessments for the forest sector in India.
Resumo:
Over the last few decades, there has been a significant land cover (LC) change across the globe due to the increasing demand of the burgeoning population and urban sprawl. In order to take account of the change, there is a need for accurate and up-to-date LC maps. Mapping and monitoring of LC in India is being carried out at national level using multi-temporal IRS AWiFS data. Multispectral data such as IKONOS, Landsat-TM/ETM+, IRS-ICID LISS-III/IV, AWiFS and SPOT-5, etc. have adequate spatial resolution (similar to 1m to 56m) for LC mapping to generate 1:50,000 maps. However, for developing countries and those with large geographical extent, seasonal LC mapping is prohibitive with data from commercial sensors of limited spatial coverage. Superspectral data from the MODIS sensor are freely available, have better temporal (8 day composites) and spectral information. MODIS pixels typically contain a mixture of various LC types (due to coarse spatial resolution of 250, 500 and 1000 in), especially in more fragmented landscapes. In this context, linear spectral unmixing would be useful for mapping patchy land covers, such as those that characterise much of the Indian subcontinent. This work evaluates the existing unmixing technique for LC mapping using MODIS data, using end-members that are extracted through Pixel Purity Index (PPI), Scatter plot and N-dimensional visualisation. The abundance maps were generated for agriculture, built up, forest, plantations, waste land/others and water bodies. The assessment of the results using ground truth and a LISS-III classified map shows 86% overall accuracy, suggesting the potential for broad-scale applicability of the technique with superspectral data for natural resource planning and inventory applications. Index Terms-Remote sensing, digital
Resumo:
Attention is directed at land application of piggery effluent (containing urine, faeces, water, and wasted feed) as a potential source of water resource contamination with phosphorus (P). This paper summarises P-related properties of soil from 0-0.05 m depth at 11 piggery effluent application sites, in order to explore the impact that effluent application has had on the potential for run-off transport of P. The sites investigated were situated on Alfisol, Mollisol, Vertisol, and Spodosol soils in areas that received effluent for 1.5-30 years (estimated effluent-P applications of 100-310000 kg P/ha in total). Total (PT), bicarbonate extractable (PB), and soluble P forms were determined for the soil (0-0.05 m) at paired effluent and no-effluent sites, as well as texture, oxalate-extractable Fe and Al, organic carbon, and pH. All forms of soil P at 0-0.05 m depth increased with effluent application (PB at effluent sites was 1.7-15 times that at no-effluent sites) at 10 of the 11 sites. Increases in PB were strongly related to net P applications (regression analysis of log values for 7 sites with complete data sets: 82.6 % of variance accounted for, p <0.01). Effluent irrigation tended to increase the proportion of soil PT in dilute CaCl2-extractable forms (PTC: effluent average 2.0 %; no-effluent average 0.6%). The proportion of PTC in non-molybdate reactive forms (centrifuged supernatant) decreased (no-effluent average, 46.4 %; effluent average, 13.7 %). Anaerobic lagoon effluent did not reliably acidify soil, since no consistent relationship was observed for pH with effluent application. Soil organic carbon was increased in most of the effluent areas relative to the no-effluent areas. The four effluent areas where organic carbon was reduced had undergone intensive cultivation and cropping. Current effluent management at many of the piggeries failed to maximise the potential for waste P recapture. Ten of the case-study effluent application areas have received effluent-P in excess of crop uptake. While this may not represent a significant risk of leaching where sorption retains P, it has increased the risk of transport of P by run-off. Where such sites are close to surface water, run-off P loads should be managed.
Resumo:
Paropsine chrysomelid beetles are significant defoliators of Australian eucalypts. In Queensland, the relatively recent expansion of hardwood plantations has resulted in the emergence of new pest species. Here I identify paropsine beetles collected from Eucalyptus cloeziana Muell. and E. dunnii Maiden, two of the major Eucalyptus species grown in plantations in south-eastern Queensland, and estimate the relative abundance of each paropsine species. Although I was unable to identify all taxa to species level, at least 17 paropsine species were collected, about one-third of which have not been previously associated with hardwood plantations. Paropsis atomaria Olivier and P. charybdis Stål were the most abundant species collected in E. cloeziana plantations, while Chrysophtharta cloelia (Stål) and P. atomaria were most commonly collected from E. dunnii. Occasional collections from Corymbia citriodora (Hook.) Hill and Johns, ssp. variegata revealed an additional four species implicated in plantation damage. Abundance and voltinism varied between species and sites. I predict which paropsine species are likely to threaten plantation productivity.
Resumo:
A framework using assessments of soil condition, pasture composition and woodland density was applied to describe 14 grazing land types as being in A (100% of original carrying capacity), B (75%), C (45%) or D (20%) condition. We assessed the condition of 260 sites, principally along public and some station roads, to provide a benchmark for current land condition. Land types were also assigned relative grazing values between 10 (best) and 0, reflecting soil fertility and potential biomass production. The method identifies particular, 'at-risk' land types for priority investment of resources, while the rationale behind assessments might point to management interventions to improve the condition of those land types. Across all land types, 47% of sites were in A condition, 34% in B condition, 17% in C condition and only 2% in D condition. Seventy-five percent of land types with grazing values >5 were in A or B condition, compared with 88% for those with grazing values ?5. For Georgetown granites, only 27% of sites were in A or B condition, with values for other land types being: alluvials 59%, black soils 64% and red duplex soils 57%, suggesting that improving management of these land types is a priority issue. On land types with high grazing value, the major discounting factor was pasture composition (72% of sites discounted), while increasing woodland density was the main discount (73% of sites discounted) on low grazing value land types.
Resumo:
Dairy farms in subtropical Australia use irrigated, annually sown short-term ryegrass (Lolium multiflorum) or mixtures of short-term ryegrass and white (Trifolium repens) and Persian (shaftal) (T. resupinatum) clover during the winter-spring period in all-year-round milk production systems. A series of small plot cutting experiments was conducted in 3 dairying regions (tropical upland, north Queensland, and subtropical southeast Queensland and northern New South Wales) to determine the most effective rate and frequency of application of nitrogen (N) fertiliser. The experiments were not grazed, nor was harvested material returned to the plots, after sampling. Rates up to 100 kg N/ha.month (as urea or calcium ammonium nitrate) and up to 200 kg N/ha every 2 months (as urea) were applied to pure stands of ryegrass in 1991. In 1993 and 1994, urea, at rates up to 150 kg N/ha.month and to 200 kg N/ha every 2 months, was applied to pure stands of ryegrass; urea, at rates up to 50 kg N/ha.month, was also applied to ryegrass-clover mixtures. The results indicate that applications of 50-85 kg N/ha.month can be recommended for short-term ryegrass pastures throughout the subtropics and tropical uplands of eastern Australia, irrespective of soil type. At this rate, dry matter yields will reach about 90% of their potential, forage nitrogen concentration will be increased, there is minimal risk to stock from nitrate poisoning and there will be no substantial increase in soil N. The rate of N for ryegrass-clover pastures is slightly higher than for pure ryegrass but, at these rates, the clover component will be suppressed. However, increased ryegrass yields and higher forage nitrogen concentrations will compensate for the reduced clover component. At application rates up to 100 kg N/ha.month, build-up of NO3--N and NH4+-N in soil was generally restricted to the surface layers (0-20 cm) of the soil, but there was a substantial increase throughout the soil profile at 150 kg N/ha.month. The build-up of NO3--N and NH4+-N was greater and was found at lower rates on the lighter soil compared with heavy clays. Generally, most of the soil N was in the NO3--N form and most was in the top 20 cm.
Resumo:
To investigate the effects of soil type on seed persistence in a manner that controlled for location and climate variables, three weed species—Gomphocarpus physocarpus (swan plant), Avena sterilis ssp. ludoviciana (wild oat) and Ligustrum lucidum (broadleaf privet)—were buried for 21 months in three contrasting soils at a single location. Soil type had a significant effect on seed persistence and seedling vigour, but soil water content and temperature varied between soils due to differences in physical and chemical properties. Warmer, wetter conditions favoured shorter persistence. A laboratory-based test was developed to accelerate the rate of seed ageing within soils, using controlled superoptimal temperature and moisture conditions (the soil-specific accelerated ageing test, SSAAT). The SSAAT demonstrated that soil type per se did not influence seed longevity. Moreover, the order in which seeds aged was the same whether aged in the field or SSAAT, with L. lucidum being shortest-lived and A. sterilis being longest-lived of the three species.
Resumo:
Senna obtusifolia (sicklepod) is an invasive weed of northern Australia, where it significantly impacts agricultural productivity and alters natural ecosystem structure and function. Although currently restricted to northern regions, the potential for S. obtusifolia to spread south is not known. Using the eco-climatic model CLIMEX, this study simulated the potential geographic distribution of S. obtusifolia in Australia under two scenarios. Model parameters for both scenarios were derived from the distribution of S. obtusifolia throughout North and Central America. The first scenario used these base model parameters to predict the distribution of S. obtusifolia in Australia, whilst the second model predicted the distribution of a cold susceptible S. obtusifolia ecotype that is reported to occur in the USA. Both models predicted the potential for an extensive S. obtusifolia distribution, with the first model indicating suitable climatic conditions occurring predominantly in coastal regions from the Northern Territory, to far north Queensland and into northern Victoria. The cold susceptible ecotype displayed a comparatively reduced distribution in the southern parts of Australia, where inappropriate temperatures, a lack of thermal accumulation and cold stress restrict the invasion south to the coastal regions of central New South Wales. The extent of the predicted distribution of both ecotypes of S. obtusifolia reinforces the need for strategic management at a national scale.
Resumo:
A workshop held in Ballina (NSW, Australia) during 5–7 August 2005 in association with the XXII IUFRO World Congress, sought to quantify the potential of mixtures to sustain and enhance the growth and productivity, soil fertility, tree and stand health, wood quality, and economics of polyculture plantations. Participants were specifically asked to address whether demonstrable productivity gains in mixed-species plantations, compared with monoculture plantations, could make mixtures a commercially attractive option. We specifically sought to attract presentations addressing the operational challenges of making mixed-species plantations practical and successful, and attracted representatives from several industrial plantation agencies.
Resumo:
Although agriculture generates 16% of Australia's greenhouse gas emissions, it also has the potential to sequester large quantities of emissions through land use management options such as agroforestry. Whilst there is an extensive amount of agroforestry literature, little has been written on the economic consequences of adopting silvopastoral systems in northern Australia. This paper reports the financial viability of adopting complementary agroforestry systems in the low rainfall region of northern Australia. The analysis incorporates the dynamic tradeoffs between tree and pasture growth, likely forest product yields, carbon sequestration and livestock methane emissions in a bioeconomic model. The results suggest there are financial benefits for landholders who integrate complementary agroforestry activities into existing grazing operations at even modest carbon prices.
Resumo:
The report summarises data from a large number of trials of species with potential for use by the plantation forest industry in north-eastern Australia and provides information aimed at improving the understanding of growth rates, pest and disease risks and carbon sequestration. Data is summarised and presented at a regional level as opposed to individual trial or plot level. As well, nutritional impediments to tree growth and impacts on forest health are also reported. This report is intended to contribute to policy deliberations about developing forestry opportunities that can that can be integrated into the landscape, with particular consideration given to lower rainfall regions. There are several examples in north-eastern Australia where production forests have developed sub-optimally; this has often been due to poor selection of tree species as little information has been available. This report helps address this deficiency.
Resumo:
Abstract Quambalaria shoot blight, caused by the fungus Quambalaria pitereka, is a serious disease affecting the expanding eucalypt plantation estate in subtropical and tropical eastern Australia. Trees that are severely infected are often multi-stemmed and stunted and infection of young trees may give rise to poor form in mature trees. A spotted gum clonal trial provided the opportunity to investigate the impact of the disease on tree growth and factors influencing tree architecture (tree form), which affects wood quality. We measured the effect that Q. pitereka infection during plantation establishment (up to 6 months old) has on growth and tree architecture and productivity to age 3 years. Our results show that the pathogen has a significant impact on trees at plantation establishment, which results in a negative impact on wood quality, potentially reducing merchantable value at final harvest. Tree growth and form was significantly improved where germplasm with low susceptibility to Q. pitereka infection was used.
Resumo:
An estimate of the irrigation potential over and above the existing utilization was made based on the ground water potential in the Vedavati river basin. The estimate is based on assumed crops and cropping patterns as per existing practice in the various taluks of the basin. Irrigation potential was estimated talukwise based on the available ground water potential identified from the simulation study. It is estimated that 84,100 hectares of additional land can be brought under irrigation from ground water in the entire basin.