958 resultados para porous material
Resumo:
Macroporosity(>100µm) in bone void fillers is a known prerequisite for tissue regeneration, but recent literature has highlighted the added benefit of microporosity(0.5 - 10µm). The aim of this study was to compare the in vitro performances of a novel interconnective microporous hydroxyapatite (HA) derived from red algae to four clinically available macroporous calcium phosphate (CaP) bone void fillers. The use of algae as a starting material for this novel void filler overcomes the issue of sustainability, which overshadows continued use of scleractinian coral in the production of some commercially available materials, namely Pro-OsteonTM and Bio-Coral®. This study investigated the physicochemical properties of each bone voidfiller material using x-ray diffraction, fourier transform infrared spectroscopy, inductive coupled plasma, and nitrogen gas absorption and mercury porosimetry. Biochemical analysis, XTT, picogreen and alkaline phosphatase assays were used to evaluate the biological performances of the five materials. Results showed that algal HA is non-toxic to human foetal osteoblast (hFOB) cells and supports cell proliferation and differentiation. The preliminary in vitro testing of microporous algal-HA suggests that it is comparable to the four clinically approved macroporous bone void fillers tested. The results demonstrate that microporous algal HA has good potential for use in vivo and in new tissue engineered strategies for hard tissue repair.
Resumo:
Two porous metal organic frameworks (MOFs), [M-2(C8H2O6)(H2O)(2)] center dot 8H(2)O (M = Co, Ni), perform exceptionally well for the adsorption, storage, and water-triggered delivery of the biologically important gas nitric oxide. Adsorption and powder X-ray diffraction studies indicate that each coordinatively unsaturated metal atom in the structure coordinates to one NO molecule. All of the stored gas is available for delivery even after the material has been stored for several months. The combination of extremely high adsorption capacity (similar to 7 mmol of NO/g of MOF) and good storage stability is ideal for the preparation of NO storage solids. However, most important is that the entire reservoir of stored gas is recoverable on contact with a simple trigger (moisture). The activity of the NO storage materials is proved in myography experiments showing that the NO-releasing MOFs cause relaxation of porcine arterial tissue.
Resumo:
Biomaterials include bioceramics, biometals, biopolymers and biocomposites and they play important roles in the replacement and regeneration of human tissues. However, dense bioceramics and dense biometals pose the problem of stress shielding due to their high Young's moduli compared to those of bones. On the other hand, porous biomaterials exhibit the potential of bone ingrowth, which will depend on porous parameters such as pore size, pore interconnectivity, and porosity. Unfortunately, a highly porous biomaterial results in poor mechanical properties. To optimise the mechanical and the biological properties, porous biomaterials with graded/gradient porosity, pores size, and/or composition have been developed. Graded/gradient porous biomaterials have many advantages over graded/gradient dense biomaterials and uniform or homogenous porous biomaterials. The internal pore surfaces of graded/gradient porous biomaterials can be modified with organic, inorganic, or biological coatings and the internal pores themselves can also be filled with biocompatible and biodegradable materials or living cells. However, graded/gradient porous biomaterials are generally more difficult to fabricate than uniform or homogenous porous biomaterials. With the development of cost-effective processing techniques, graded/gradient porous biomaterials can find wide applications in bone defect filling, implant fixation, bone replacement, drug delivery, and tissue engineering.
Resumo:
Electrochemical water splitting used for generating hydrogen has attracted increasingly attention due to energy and environmental issues. It is a major challenge to design an efficient, robust and inexpensive electrocatalyst to achieve preferable catalytic performance. Herein, a novel three-dimensional (3D) electrocatalyst was prepared by decorating nanostructured biological material-derived carbon nanofibers with in situ generated cobalt-based nanospheres (denoted as CNF@Co) through a facile approach. The interconnected porous 3D networks of the resulting CNF@Co catalyst provide abundant channels and interfaces, which remarkably favor both mass transfer and oxygen evolution. The as-prepared CNF@Co shows excellent electrocatalytic activity towards the oxygen evolution reactions with an onset potential of about 0.445 V vs. Ag/AgCl. It only needs a low overpotential of 314 mV to achieve a current density of 10 mA/cm<sup>2</sup> in 1.0 M KOH. Furthermore, the CNF@Co catalyst exhibits excellent stability towards water oxidation, even outperforming commercial IrO<inf>2</inf> and RuO<inf>2</inf> catalysts.
Resumo:
A series of porous organic cages is examined for the selective adsorption of sulphur hexafluoride (SF6) over nitrogen. Despite lacking any metal sites, a porous cage, CC3, shows the highest SF6/N2 selectivity reported for any material at ambient temperature and pressure, which translates to real separations in a gas breakthrough column. The SF6 uptake of these materials is considerably higher than would be expected from the static pore structures. The location of SF6 within these materials is elucidated by x-ray crystallography, and it is shown that cooperative diffusion and structural rearrangements in these molecular crystals can rationalize their superior SF6/N2 selectivity.
Resumo:
Powder-based inkjet three-dimensional printing (3DP) to fabricate pre-designed 3D structures has drawn increasing attention. However there are intrinsic limitations associated with 3DP technology due to the weak bonding within the printed structure, which significantly compromises its mechanical integrity. In this study, calcium sulphate ceramic structures demonstrating a porous architecture were manufactured using 3DP technology and subsequently post-processed with a poly (ε-caprolactone) (PCL) coating. PCL concentration, immersion time, and number of coating layers were the principal parameters investigated and improvement in compressive properties was the measure of success. Interparticle spacing within the 3DP structures were successfully filled with PCL material. Consequently the compressive properties, wettability, morphology, and in vitro resorption behaviour of 3DP components were significantly augmented. The average compressive strength, Young’s modulus, and toughness increased 217%, 250%, and 315%, following PCL coating. Addition of a PCL surface coating provided long-term structural support to the host ceramic material, extending the resorption period from less than 7 days to a minimum of 56 days. This study has demonstrated that application of a PCL coating onto a ceramic 3DP structure was a highly effective approach to addressing some of the limitations of 3DP manufacturing and allows this advanced technology to be potentially used in a wider range of applications.
Resumo:
Introducción: La evaluación de injertos vasculares de submucosa de intestino delgado para la regeneración de vasos sanguíneos ha producido una permeabilidad variable (0-100%) que ha sido concurrente con la variabilidad en las técnicas de fabricación. Metodología: Investigamos los efectos de fabricación en permeabilidad y regeneración en un diseño experimental de 22factorial que combino: 1) preservación (P) o remoción (R) de la capa estratum compactum del intestino, y 2) deshidratada (D) o hidratada (H), dentro de cuatro grupos de estudio (PD, RD, PH, RH). Los injertos fueron implantados en las Arterias Carótidas de porcinos (ID 4.5mm, N=4, 7d). Permeabilidad, trombogenicidad, reacción inflamatoria, vascularización, infiltración de fibroblastos, perfil de polarización de macrófagos y fuerza tensil biaxial fueron evaluadas. Resultados: Todos los injertos PD permanecieron permeables (4/4), pero tuvieron escasa vascularización e infiltración de fibroblastos. El grupo RD permaneció permeable (4/4), presentó una extensa vascularización e infiltración de fibroblastos, y el mayor número del fenotipo de macrófagos (M2) asociado a regeneración. El grupo RH presentó menor permeabilidad (3/4), una extensa vascularización e infiltración de fibroblastos, y un perfil dominante de M2. El grupo PH presentó el menor grado de permeabilidad, y a pesar de mayor infiltración celular que PD, exhibió un fenotipo de macrófagos dominante adverso. La elasticidad de los injertos R evolucionó de una manera similar a las Carótidas nativas (particularmente RD, mientras que los injertos P mantuvieron su rigidez inicial. Discusión: Concluimos que los parámetros de fabricación afectan drásticamente los resultados, siendo los injertos RD los que arrojaron mejores resultados.
Resumo:
In this paper it is shown that a number of theoretical models of the acoustical properties of rigid frame porous media, especially those involving ratios of Bessel functions of complex argument, can be accurately approximated and greatly simplified by the use of Padé approximation techniques. In the case of the model of Attenborough [J. Acoust. Soc. Am. 81, 93–102 (1987)] rational approximations are produced for the characteristic impedance, propagation constant, dynamic compressibility, and dynamic density, as a function of frequency and the material parameters. The model proposed by Stinson and Champoux
Resumo:
Basic oxygen furnace (BOF) slag media were studied as a potential treatment material in on-site sanitation systems. Batch and column studies were conducted to evaluate attenuation of the bacteriophage PR772 and 0.190 mu m diameter microspheres by BOF media, and to delineate the relative contributions of two principle processes of virus attenuation: inactivation and attachment. In the batch studies, conducted at 4 degrees C, substantial inactivation of PR772 did not occur in the pH 7.6 and 9.5 suspensions. At pH 11.4, bimodal inactivation of PR772 was observed, at an initial rate of 2.1 log C/C(0) day(-1) for the first two days, followed by a much slower rate of 0.124 log C/C(0) day(-1) over the following 10 days. Two column studies were conducted at 4 degrees C at a flow rate of 1 pore volume day(-1) using two slag sources (Stelco, Ontario; Tubarao, Brazil) combined with sand and pea gravel. In both column experiments, the effluent microsphere concentration approached input concentrations over time (reductions of 0.1-0.2 log C/C(0)), suggesting attachment processes for microspheres were negligible. Removal of PR772 virus was more pronounced both during the early stages of the experiments, but also after longer transport times (0.5-1.0 log C/C(0)). PR772 reduction appeared to be primarily as a result of virus inactivation in response to the elevated pH conditions generated by the BOF mixture (10.6-11.4). On-site sanitation systems using BOF media should be designed to maintain sufficient contact time between the BOF media and the wastewater to allow sufficient residence time of pathogens at elevated pH conditions. (C) 2009 Published by Elsevier Ltd.
Resumo:
The presence of pores in ceramics is directly related to the chosen forming process. So, in the starch consolidation method, the ceramics show, after burning, pores with morphology similar to that presented by this organic material. on the other hand, the increase in solid load leads up to alterations in dispersion viscosity, increasing the thermal stresses during drying and sintering processes. In order to verify the solid percentage influence in ceramic final properties, samples were prepared with silicon carbide in different compositions using or not starch as binder agent and pore forming element. The characterization of the ceramic pieces was performed by superficial roughness measurements, porosity besides by optical and scanning electron microscopy. The results showed ceramics with SiC and starch presented physical and microscopic properties slightly higher in relation to those with only ceramic powder in their composition. The presence of organic material, agglomerated and foam during the forming were essential for the final properties of the studied samples.
Resumo:
Several researches have been developed in order to verify the porosity effect over the ceramic material properties. The starch consolidation casting (SCC) allows to obtain porous ceramics by using starch as a binder and pore forming element. This work is intended to describe the porous mathematical behavior and the mechanical resistance at different commercial starch concentration. Ceramic samples were made with alumina and potato and corn starches. The slips were prepared with 10 to 50 wt% of starch. The specimens were characterized by apparent density measurements and three-point flexural test associated to Weibull statistics. Results indicated that the porosity showed a first-order exponential equation e(-x/c) increasing in both kinds of starches, so it was confirmed that the alumina ceramic porosity is related to the kind of starch used. The mechanical resistance is represented by a logarithmic expression R = A + B/1+10((Log(x0)-P)C).
Resumo:
Purpose: Synthetic hydroxyapatite and porous polyethylene (Polipore) spheres were placed in rabbits' eviscerated cavities to evaluate tissue reaction and volume maintenance.Methods. Fifty-six Norfolk albino rabbits underwent unilateral evisceration and implantation of synthetic hydroxyapatite (H group, 28 animals) or porous polyethylene spheres (P group, 28 animals). Postoperative reactions, animal behavior, and socket conditions were monitored. Light microscopy and morphometric evaluation with statistical analysis of the exenterated orbits were performed at 7, 15, 30, 60, 90, 120, and 180 days. Scanning electron microscopy was appraised 7, 60, and 180 days after surgery.Results: Two animals from the H group and 1 from the P group had extrusion 7 days after surgery. Throughout the experimental period, the synthetic hydroxyapatite caused more inflammation than the porous polyethylene material. Ingrowth in the sphere occurred 7 to 15 days after the surgery in both groups, and the tissue reaction became denser at approximate to60 to 90 days, when bony metaplasia began in the H group. Volume maintenance was better in the P group and with a smaller pseudocapsule surrounding the implanted sphere than in the H group.Conclusions: Clinical findings demonstrated mild inflammation inside the sphere and in the pseudocapsule surrounding it and better cavity volume maintenance in the P group animals. The authors consider porous polyethylene a more suitable material than synthetic hydroxyapatite for use in anophthalmic cavity reconstruction.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)